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CLINICAL HIGHLIGHTS

e The health of men and women is profoundly influenced by biological sex, which can also intersect with gender (a
social construct).

e Sex differences are evident in multiple lung diseases across the lifespan, with some conditions switching patterns
during puberty or menopause and/or almost exclusively affecting female patients.

e While some lung conditions are more common in women, cause different symptoms, and are more likely to be
fatal in women than in men, sex-specific treatments and prevention strategies are not yet available.

e Integrating sex analyses in research studies is fundamental, going beyond simply including women in clinical trials
and female subjects in experimental designs.

e The role of sex hormones in women’s health during key life stages (e.g., menstrual cycles, pregnancy, menopause)
remains unclear. Still, it is crucial in conditions affected by female steroids, such as asthma and responses to envi-
ronmental challenges.

e In situations unique to women, as well as during life events affecting both sexes, such as puberty and aging, the
distinct impacts of female and male sex hormones contribute to their complex and multidimensional connections
to lung function.

e Both endogenous and exogenous hormones can influence lung disease mechanisms, responses to environmen-
tal challenges, and lung disease therapeutics. Understanding these mechanisms is key to improving disease pre-
vention and outcomes.
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Abstract

Sex plays an essential role as a biological variable in lung health, leading to observed differences in lung dis-
ease susceptibility. Some respiratory conditions are more common in women than men, especially after puberty,
indicating the influence of ovarian hormones on disease mechanisms. Other conditions display sex disparities
that begin in utero and progress throughout the life span. Preclinical and clinical studies have indicated that
both sex chromosomes and hormones can influence lung disease outcomes, immune responses, susceptibility
to viral and bacterial infection, and responses to environmental challenges. This review summarizes the latest
research on how sex affects lung physiology and health, drawing on a wide range of studies in respiratory phys-
iology and anatomy, genetics, molecular and cellular biology, environmental health, and immunity. We empha-
size how biological sex, gonadal hormones, and occupational and environmental exposures can impact disease
mechanisms and outcomes. As clinical outcomes among women have not improved at the same rate as men
over the past few decades, it is crucial to understand the role played by the sex variable in designing strategies
to prevent and mitigate disease. The collective research indicates that sex-induced differences in the respiratory
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system are essential determinants of physiological responses and clinical outcomes.
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1. INTRODUCTION

The respiratory system exhibits intrinsic anatomical and
physiological sex differences that affect lung disease
development, manifestation, and severity across the life
span (1-9). Appreciating these sex differences is crucial
to understanding the mechanisms of disease develop-
ment and response to treatment and developing per-
sonalized therapies (10-16). Starting from the embryonic
stages and continuing over the life course, the sex vari-
able significantly influences the development of the
respiratory system and its response to endogenous and
exogenous factors. Overall, ample epidemiological, clini-
cal, and experimental data emphasize the need to study
sex differences in the lung and the regulatory roles of
sex hormones. Understanding these concepts is essen-
tial not only to appreciate intrinsic sex differences in nor-
mal pulmonary physiology across age groups but also to

0031-9333/26 Copyright © 2026 the American Physiological Society.

gain insights into disease development and the devel-
opment of sex-based therapies.

2. SEX AND GENDER VARIABLES AND THEIR
INFLUENCE ON LUNG HEALTH

While the terms “sex” and “gender” are often used inter-
changeably, they refer to distinct concepts (FIGURE 1).
Sex pertains to the biological differences between
males and females, including sex organs, hormones,
anatomical and physiological variances, and sex chro-
mosomes. Biological sex can influence physiological
aspects underlying respiratory disease and response to
environmental challenges. On the other hand, gender is
a broader concept encompassing social roles, behav-
iors, expectations, and identities within historical or cul-
tural contexts (17-20). As such, gender can influence
environmental responses and disease processes due to
occupational or social roles, as well as exposure to
exogenous hormone treatments (21-23). Moreover, sex
and gender can intersect to influence lung disease out-
comes (24, 25).

In medicine, understanding how gender is influenced
by culture, work environments, and psychosocial expo-
sures is crucial for providing comprehensive healthcare.
While it has been shown that sex can affect certain dis-
eases differently due to biological, genetic, and hormonal
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The health of men and women is profoundly influenced by biolog-
ical sex, which can also intersect with gender (a social construct).
Sex differences are evident in multiple lung diseases across the
lifespan, with some conditions switching patterns during puberty
or menopause and/or almost exclusively affecting female patients.
e While some lung conditions are more common in women, cause
different symptoms, and are more likely to be fatal in women than
in men, sex-specific treatments and prevention strategies are not
yet available.

Integrating sex analyses in research studies is fundamental, going
beyond simply including women in clinical trials and female sub-
jects in experimental designs.

e The role of sex hormones in women’s health during key life
stages (e.g., menstrual cycles, pregnancy, menopause) remains
unclear. Still, it is crucial in conditions affected by female steroids,
such as asthma and responses to environmental challenges.

In situations unique to women, as well as during life events affect-
ing both sexes, such as puberty and aging, the distinct impacts of
female and male sex hormones contribute to their complex and
multidimensional connections to lung function.

Both endogenous and exogenous hormones can influence lung
disease mechanisms, responses to environmental challenges,
and lung disease therapeutics. Understanding these mechanisms
is key to improving disease prevention and outcomes.

(]

variations, gender can influence healthcare-seeking pat-
terns and response to treatment (26—-28). Similarly,
changes in gender roles and expectations can alter dis-
ease prevalence patterns over time. For instance, as
more women have entered the workforce and used
tobacco products, patterns of associated lung disease
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prevalence have shifted, which may necessitate reevalu-
ating environmental and occupational policies and air
quality standards (21, 29).

3. SEX DIFFERENCES IN LUNG DISEASE
PREVALENCE AND OUTCOMES

Over the past several decades, multiple studies have
indicated that the prevalence, progression, and out-
comes of diseases in women and men are influenced
by both biological sex and gender (4). Disease epidemi-
ology and clinical manifestations also vary between
sexes across the lifespan (FIGURE 2). These differen-
ces are observed as early as infancy, when respiratory
distress syndrome (RDS) and bronchopulmonary dys-
plasia (BPD) rates are higher for male than female new-
borns (10, 30, 31), and continue throughout childhood
when asthma and chronic cough are more common in
boys than girls (5). Certain respiratory infections like
respiratory syncytial virus (RSV) are also more predomi-
nant in boys than girls (32, 33). Interestingly, after
puberty, women have higher rates of asthma preva-
lence, severity, exacerbations, hospitalizations, and
mortality compared to men (28, 34-36). Adult women
are also more disproportionally affected by conditions
such as pulmonary hypertension (PH) (37, 38), chronic
obstructive pulmonary disease (COPD) (9, 39, 40), bron-
chiectasis (41-43), and lung cancer. Men present with

os

Gender factors
(social/cultural)

Y.

—

« gender roles

e occupational exposures
access to care
consumer products

« exogenous hormone use

The sex and gender variables and their influence on lung disease susceptibility. The sex variable (/eft) is biological and includes chromo-

somal and hormonal factors that can influence the susceptibility to lung diseases through physiological responses. The gender variable (right) is a
social construct that can influence environmental exposures through established roles and normative habits, affecting lung disease risk. Both sex and
gender can intersect to influence lung disease presentation, responses to environmental challenges, and disease treatment. Figure created with a

licensed version of BioRender.com.

54 Physiol Rev -VOL 106 - JANUARY 2026 . www.prv.org

Downloaded from journals.physiology.org/journal/physrev by Patricia Silveyra (187.111.028.181) on October 20, 2025.


http://www.prv.org

¢) SEX, HORMONES, AND LUNG HEALTH

Male BPD
predominance RDS
Newborn

Female
predominance

Asthma OSA
Chronic cough IPF
RSV infection Pneumonia

Children Adult

b 4

Asthma

COPD
OSA PH

LAM
Lung Cancer

FIGURE 2. Sex differences in lung disease incidence across the life span. While some diseases display marked sex differences across all ages, others
(asthma and obstructive sleep apnea) show inverse patterns before and after puberty. Hormonal, genetic, and environmental factors have been impli-
cated in the sex disparities observed for respiratory conditions. BPD, bronchopulmonary dysplasia; COPD, chronic obstructive pulmonary disease; IPF,
idiopathic pulmonary fibrosis; LAM, lymphangioleiomyomatosis; OSA, obstructive sleep apnea; PH, pulmonary hypertension; RDS, respiratory distress
syndrome; RSV, respiratory syncytial virus Figure created with a licensed version of BioRender.com.

higher rates of idiopathic pulmonary fibrosis (IPF) (44,
45) and obstructive sleep apnea (OSA) (46). Sleep dis-
orders are also more common in women, particularly
during pregnancy, and conditions like lymphangioleio-
myomatosis (LAM) are almost exclusive to women (47—
50). On the other hand, lung infections resulting in
pneumonia and COVID-19 display higher severity in
men in the acute phase, while their chronic counter-
parts and long-term consequences (e.g., long-COVID)
affect more women (51, 52). Thus, considering sex and
gender in research helps us comprehend disease
mechanisms and identify ways to enhance personal-
ized medicine and lung health outcomes. To under-
stand the mechanisms underlying sex differences in
lung disease, a variety of animal models have been
developed to recapitulate specific disease phenotypes.
Most of these studies have been conducted in mice,
taking advantage of genetically modified models. The
sections below summarize known sex-specific features
of lung conditions disproportionally affecting males and
females throughout life, as well as the mechanisms
identified using animal models.

3.1. Respiratory Distress Syndrome

Previously known as hyaline membrane disease, RDS is a
condition that primarily affects prematurely born infants
due to their underdeveloped lungs and insufficient surfac-
tant expression. This results in widespread lung collapse
and reduced lung function, leading to complications such
as pneumothorax. Before the use of antenatal corticoste-
roids and postnatal surfactant replacement therapy, this
condition significantly increased neonatal mortality, with a
higher risk observed in male neonates (30, 53). A meta-
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analysis of data from over 500,000 preterm newborns
reported that RDS was almost twice as prevalent in new-
born males as in females (54). This increased risk persists
even after controlling for factors such as gestational age
(GA), birth weight, and other clinical parameters (55).

It is known that RDS partially results from surfactant
deficiency and dysfunction in the immature lung.
Produced by alveolar type 2 (AT2) cells, pulmonary sur-
factant forms a lipid layer over the inner surface of the
alveoli, reducing surface tension and preventing alveo-
lar collapse at the end of expiration (56). As a result, the
more developed the fetal lung, the lower the risk of
developing RDS after birth. Female fetal lungs tend to
be more advanced structurally than male lungs at earlier
GA, a process mediated by sex hormones (11, 57, 58).
Pulmonary surfactant is produced earlier in females than
in males during gestation, stimulated by female sex hor-
mones and inhibited by male sex hormones (31, 59, 60)
(FIGURE 3).

Both maternal and fetal sex steroids play essential
roles in lung development and, thus, RDS susceptibil-
ity (FIGURE 4). Production of testosterone and anti-
Mullerian hormone (AMH) by fetal testes contributes to
delayed surfactant production in the male lung. The fetal
androgens inhibit AT2 development and surfactant pro-
duction in male embryos (61, 62). In addition, androgen
receptors (ARs) are highly concentrated on epithelial
cells that control bronchial development (56). These
cells also contain high levels of 5-alpha reductase, sug-
gesting that dihydrotestosterone and other androgens
influence early bronchiole formation (63). Additionally,
androgens inhibit surfactant production by suppressing
epidermal growth factor (EGF) and transforming growth
factor-pB1 (TGFB1) in AT2 cells (64). Research in rabbits
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FIGURE 3. Sex differences in lung development. The development of the human lung is divided into 5 main phases: the embryonic phase (3—7 weeks
of gestation), the pseudo-glandular phase (5-17 weeks of gestation), the canalicular phase (16—29 weeks of gestation), the saccular phase (24—
38 weeks of gestation), and the alveolar phase (32 weeks of gestation through adolescence). The expression and secretion of pulmonary surfactant
begin about 2 weeks earlier in female lungs than in male lungs (26—28 weeks of gestation). Figure created with a licensed version of BioRender.com.

has demonstrated that female fetuses exposed to
androgens show delayed lung development, while
blocking androgens in male fetuses eliminates the typi-
cal sex-based differences in surfactant production (65).
Conversely, placental estradiol induces female fetuses to
produce surfactant much earlier and display enhanced
alveolar maturation due to higher expression, signal-
ing, and activity of estrogen receptors (66, 67).
Estrogen also influences lung development through
platelet-derived growth factor (PDGF) and granulo-
cyte-macrophage colony-stimulating factor (GM-CSF)
signaling to affect alveolar structure, lung elasticity,
and surfactant production (66-68). Studies have
shown that removing estrogen receptor-f in female
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— LG
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l week 8.5

delay in airway branch

mice results in increased alveolar size and decreased
alveolar surface area, creating characteristics that
resemble male lungs (60). These structural differen-
ces significantly impact RDS risk in premature infants
by affecting both surfactant levels and the lung’s abil-
ity to facilitate gas exchange.

Pregnant women at risk of preterm birth are adminis-
tered antenatal steroids to accelerate lung maturity in
the preterm fetus, reducing the likelihood of RDS and
the need for respiratory support after birth. This treat-
ment also has varying effects based on fetal sex.
Following antenatal betamethasone therapy, female
neonates derive more benefit compared to similarly
treated males. However, some studies have shown that

enhancement of lung
development, induction
of alveolar type 2 cells
differentiation and
surfactant synthesis

delay of lung development
and alveolar type 2 cell
differentiation, delay of
surfactant production,
alteration of lung cell
communication

ing,

— enhanced apoptosis, delay
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FIGURE 4. Hormonal secretion and reg-
ulatory effects during lung development.
Male fetuses produce anti-Mdllerian hor-
mone (AMH) and testosterone at 8.5 and
9 weeks of gestation, respectively, which
delay lung development. In week 20, the
placenta produces estradiol, which affects
the expression of surfactant in both male
and female fetuses. Figure created with a
licensed version of BioRender.com.
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antenatal steroids may not provide a protective effect in
preterm male neonates weighing less than 1,000 g at birth
(69). Another study reported that betamethasone treat-
ment prevents RDS with higher potency in preterm
females (53). Furthermore, preterm females exhibit better
preservation of microvascular blood flow following gluco-
corticoid exposure (70, 71), although a subsequent sys-
tematic review and meta-analysis found no sex-specific
differences (10). The administration of antenatal corticoste-
roids not only enhances the infant’s response to subse-
quent surfactant treatment but also makes this effect
more prominent in female infants than male infants of the
same age (72). Treatment with surfactant results in better
responses in females than males, with males requiring
higher doses to acquire similar outcomes and reduce mor-
tality (73). Together, these differences in disease presenta-
tion and response to treatment have been postulated to
influence the development of other complications of pre-
maturity, including pulmonary, neurological, ocular, and
gastrointestinal (74, 75). The relationship between sex hor-
mones and fetal lung development helps explain why
male infants face higher rates of RDS than females, even
when antenatal corticosteroids are administered. While
corticosteroids enhance the airway sodium-potassium
pump activity to clear fetal lung fluid, male neonates have
fewer alveolar sodium transport channels compared to
females (76). This reduced sodium transport capacity can
lead to fluid retention in the lungs, compromising gas
exchange and increasing RDS risk (77).

For several decades, excessive oxidative stress com-
bined with weak antioxidant defenses has been postu-
lated as an underlying mechanism of diseases of
prematurity (78, 79). This theory has gained significant
support, with oxidative stress now recognized as a cen-
tral factor in premature infant complications. Importantly,
research has revealed that male and female preterm
infants differ in their ability to defend against oxidative
stress, with females showing higher antioxidant enzyme
activity than males (80). In this context, the glutathione
system plays a particularly crucial role. Multiple studies
have identified significant sex differences in glutathione
levels; the enzymatic activity of glutathione peroxidase,
reductase, and S-transferase; and cysteine metabolism
in the placenta, umbilical cord, and immune cells (81—
83). Based on these findings, it has been suggested that
new treatments to protect against oxidative stress in
premature infants should both address the glutathione
system and account for the infant’s sex.

While research in the past few decades has revealed
associations of genetic, hormonal, and cellular factors
(FIGURE 5), the key biological mechanism driving the
observed sex differences in RDS appears to be the effect
of sex hormones on fetal lung development. Estrogen
promotes, and androgen delays, lung maturation and

Physiol Rev -VOL 106 - JANUARY 2026 . www.prv.org

surfactant production, giving female fetuses an advant-
age during premature birth.

3.2. Bronchopulmonary Dysplasia

Also found in prematurely born infants, BPD is a condi-
tion characterized by an arrest in alveolarization and
abnormal development of the pulmonary blood vessels,
currently diagnosed based on the need for oxygen or
respiratory support at 36 weeks of postmenstrual age
(84, 85). The risk of developing BPD is higher in
extremely premature boys, with male sex considered an
independent predictor for BPD and its severity (86—88).
Children with BPD may also experience long-term com-
plications such as the need for tracheostomy and
mechanical ventilation, pulmonary hypertension of the
newborn, and poor neurodevelopmental outcomes (85,
89-93). Long-term lung function in premature boys with
BPD is also worse than in girls, leading to the earlier
onset of chronic adult diseases (94—-99).

Studies have suggested that the lungs of preterm
females may adapt to the postnatal environment more
successfully than those of males, since the developing
female fetal lung may be more advanced in lung matura-
tion. In this regard, a prospective cohort study identi-
fied male sex and intrauterine growth restriction as
essential risk factors for persistent respiratory mor-
bidity in extremely premature newborns (100, 101). Studies
have also shown that males experience impaired lung
repair and recovery mechanisms despite exposure to simi-
lar perinatal insults and treatments as females (102, 103).
Still, more research is needed before a sex-specific ther-
apy can be claimed, as several other factors have been
shown to influence therapeutic responses (104-107).

Clinical studies have attempted to identify the mecha-
nisms underlying sex disparities in BPD (108, 109).
Differences in lung development and response to hyper-
oxia have been postulated as the main contributors,
with genes involved in angiogenesis, inflammation, and
epithelial and mesenchymal transition (EMT) displaying
sex-specific expression (FIGURE 6). A recent cohort
study showed that while in female neonates BPD was
associated with inflammatory responses mediated by
CCL2 and galectin-1, in males it was linked to decreased
expression of mesenchymal cell (MSC) genes that are
crucial for distal lung development (110). These included
platelet-derived growth factor receptor-a (PDGFRu),
fibroblast growth factor 7 (FGF7), WNT2, SPRY1, matrix
metalloproteinase 3 (MMP3), and forkhead box F2
(FOXF2) (110).

Mouse models of neonatal lung disease, typically
involving prenatal exposure to hyperoxia, have also
revealed sex differences. Neonatal male mice show
greater arrest in alveolarization and vascularization, as
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well as greater alveolar simplification than female mice
(108, 111-113). Mice also displayed sex-specific lung tran-
scriptomic profiles, with upregulated EMT transition
genes in females, but downregulation in males, and
increased expression of lung repair and angiogenesis
genes [including Vegf, Vegf receptor 2 (VegfR2), and
prolyl hydroxylase domain 2 (Phd2)] in females (114).
Grimm et al. (115) also demonstrated that genes in the
female sex chromosomes could be protective against
neonatal lung injury. A study investigating gene expres-
sion in alveolar macrophages (AMs) from neonatal mice
exposed to hyperoxia also revealed high expression of
sex-chromosome-specific transcripts in male mice that
were associated with inflammation, as well as pathways
related to glucose and carbohydrate metabolism (113).
On the other hand, female AMs showed higher expres-
sion of the female-specific transcript Xist, which attenu-
ated the acute inflammatory response to hyperoxia, and
elevated interferon signaling and pathways related to
DNA damage (113).

Besides changes in inflammatory, MSC, developmen-
tal, and metabolic gene expression, researchers have
established associations of intracellular and secreted
microRNAs (miRNAs) with BPD (116—120). MiRNAs play

58

important roles in posttranscriptional gene expression
regulation and could mediate sex-specific phenotypes
(121, 122). MiRNAs modulate oxidative stress, prolifera-
tion, apoptosis, senescence, inflammatory responses,
and angiogenesis, which play pivotal roles in the devel-
opment of BPD. Recently, Zhang et al. (123) reported
that while male and female mice exposed to hyperoxia
expressed similar levels of lung miR-30a at postnatal
day 7 (PND 7; acute phase), in the recovery phase (PND
21), females expressed significantly higher levels of miR-
30a in lung tissue than males. Moreover, female neona-
tal human pulmonary microvascular endothelial cells
had greater expression of miR-30a in response to hyper-
oxia exposure, as well as increased sprouting. The
authors suggested that miR-30a mediates sex-specific
angiogenesis and BPD outcomes via regulation of the
delta-like ligand 4 (DllI4) gene, with increased miR-30a
inhibiting DIl4 expression and stimulating angiogenesis
in females, and the opposite effect in males (123). In a
follow-up study using miR-30 knockout mice, the same
group demonstrated that the sex-specific phenotypic
effect of hyperoxia exposure was abrogated and that
miR-30 mediated sex-specific transcriptomic responses
in the bronchial epithelium (124).
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FIGURE 6. Male- and female-specific mechanisms of bronchopul-
monary dysplasia in the infant lung. Risk factors associated with
bronchopulmonary dysplasia (BPD) and a summary of main genetic,
cellular, and molecular mechanisms associated with BPD in clinical
and preclinical models of BPD including the sex variable. DIl4, delta-
like canonical notch ligand 4; FGF7, fibroblast growth factor 7;
FOXF2, forkhead box F2; MMP3, matrix metalloproteinase 3; MSC,
mesenchymal cells; PDGFRa, platelet-derived growth factor recep-
tor-o; Phd2, prolyl hydroxylase domain 2; VegfR2, vascular endothe-
lial factor receptor 2.

Sex differences have also been reported for surfactant
protein gene expression and associated gene variants,
suggesting an interaction of genetic and hormonal factors
in the development of BPD (125-127). For example, gene
variants of the surfactant protein A genes (SFTPA1 and
SFTPA2) differ in their expression in males and females
and their ability to regulate lung function mechanics and
survival in response to infection challenge (128, 129). Data
from experimental models indicate that surfactant protein
genetics interact with sex to influence immune function
and response to exogenous surfactant treatment (130,
131). A recent study in an animal model of perinatal hyper-
oxia using surfactant protein A (SP-A) knockout mice
revealed that female SP-A-deficient mice responded
more negatively to oxidative stress challenge than males,
although sex-specific mechanisms were not investigated
(132). On the other hand, the increase in surfactant protein
D (SP-D) levels after birth has been postulated to

Physiol Rev -VOL 106 - JANUARY 2026 . www.prv.org

inversely associate with BPD (133). Interestingly, there is a
drop in SP-D serum levels in neonate males, as opposed
to anincrease in females, from PND 3 to 7, although the
association with BPD outcomes remains unclear (134).
Overall, the impact of sex on genetic susceptibility to BPD
remains an area needing further exploration, as existing
studies have not consistently investigated or reported
sex-based differences.

3.3. Asthma

Asthma is a prevalent chronic disease characterized by
airway inflammation, clinically manifested by dyspnea,
wheezing, cough, and chest tightness (15, 135, 136). As a
heterogeneous disease, asthma is characterized by vari-
ous phenotypes, inflammatory patterns, and differing
responses to available treatments across the life span.
For example, type 2 high (T2-high) asthma is marked by a
strong Th2-driven inflammatory response, involving cyto-
kines such as IL-4, IL-5, and IL-13, as well as eosinophilia
and elevated IgE levels. T2-high asthma is more respon-
sive to corticosteroids and is estimated to affect 50-70%
of asthma patients (137, 138). In contrast, T2-low asthma
exhibits less T2 inflammation, normal eosinophil counts,
and low or absent IgE (139). T2-low asthma is less atopic
and less responsive to corticosteroids (140). In adults, T2-
low asthma shows a female predominance, particularly in
obese patients (139, 141-145). On the other hand, males
tend to present asthma phenotypes associated with ciga-
rette smoking and environmental factors, as well as exer-
cise-induced bronchoconstriction (146, 147). Extensive
reviews of the literature including cross-sectional, lon-
gitudinal, observational, and randomized control trials
have supported the notion that more severe asthma
phenotypes are more prevalent in adult females,
resulting in higher healthcare costs (12, 16). However,
there are conflicting data in the literature, with some
studies indicating a more predominant Th2 phenotype
in females (145, 148-150) and others indicating the
opposite (151, 152).

There are significant differences in asthma incidence,
prevalence, and severity, including response to exer-
cise, depending on the sex of the patient (4, 136, 146).
Before puberty, asthma is more prevalent and severe in
young boys compared to girls. This leads to higher rates
of asthma-related emergency department visits and hos-
pitalizations among prepubescent boys than girls of the
same age (153-155). However, after puberty, the preva-
lence, severity, and mortality of asthma are higher in
women compared to men (16) (FIGURE 7). It has been
suggested that the bimodal distribution of asthma and
sex differences may be due to changes in circulating
sex hormone levels at puberty (i.e., adrenarche in boys
and menarche in girls) as well as declining levels with
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FIGURE 7. Sex differences in asthma prevalence and mortality in children and adults by sex. Data (mean and standard error) are from the 2022 data-

base of the Centers for Disease Control and Prevention.

aging in men and with menopause in women (16, 156).
Reports indicate that androgens may ameliorate, and
estrogens may amplify, allergic airway inflammation,
potentially accounting for some of the differences in
asthma phenotypes and severity among men and
women (150, 157-166).

The sex disparity in asthma during childhood has
been noted in multiple cohort studies (5, 145). While the
underlying mechanisms are still unclear, this disparity is
attributed to genetic factors, anatomical differences,
environmental exposures, and the microbiome (167—
170). Regarding genetic factors, a study by Loisel et al.
(170) identified notable genetic differences in asthma risk
based on sex. Two single-nucleotide polymorphisms
(SNPs) in the interferon gamma gene, rs2069727 and
rs2430561, showed significant interactions with sex in
determining asthma risk, despite having no direct main
effects on asthma. Interestingly, boys who were heterozy-
gous for these SNP variants had the highest asthma risk,
while girls who were heterozygous had the lowest risk
(170). Similarly, a study involving the EVE Asthma Genetics
Consortium identified six sex-specific asthma risk alleles by
conducting separate genome-wide association studies
(GWAS) for males and females (171). Of these, 2 SNPs were
male specific (rs2549003, rs17642749), while four SNPs
were female specific (rs1012307, rs4673659, rs2675724,
and rs9895098). While the female SNPs were mostly in
intronic regions and the 3’-untranslated region (3’-UTR),
the male SNPs were in genomic regions. Notably, all SNPs
were ancestry specific, with the most significant sex-spe-
cific associations found in male European Americans at
the interferon regulatory factor 1 (IRF1) locus on 5g31.1
(rs2549003) and a Latino female-specific association in
the 3’-UTR of the RAP1GAP2 gene, which encodes a
GTPase-activating protein regulating dense granule
secretion in platelets (171). More recently, Espuela-Ortiz
et al. (172) reported 4 independent loci that interacted
with sex in a GWAS analysis. The 17q12-21 locus was
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significantly associated with asthma risk in females but
not in males, while other genetic variants were linked to
asthma only in males (172). Enrichment and pathway
analyses revealed an overrepresentation of processes
related to the immune system and highlighted differen-
ces between sexes.

Multiple genomic studies have attempted to identify
genetic and epigenetic associations with asthma, report-
ing over 3,000 genetic variants in more than 140 loci
(173). However, only a fraction of these studies disaggre-
gated data between males and females. A recent analy-
sis by Zein et al. (174) of over 500,000 non-Hispanic
white participants of the United Kingdom (UK) biobank
revealed sex-specific gene associations with asthma,
with 8 genes displaying sex differences (HLA-DQA1,
HLA-DQBY1, IL1RL1, FLG-AST, BTNL2, IL18R1, HLA-DPAT1,
and IRF4). These genes were mostly associated with Th1
and Th2 activation and antigen presentation pathways,
as well as glucocorticoid receptor signaling, and IL-4 sig-
naling (174).

Other studies focusing on gene expression levels in
various cells and tissues revealed sex-specific pathways
in asthma. This is relevant since a recent analysis of the
genotype-tissue expression (GTEx) database indicated
that over 6,500 protein-coding genes showed signifi-
cant sex-specific expression patterns across multiple tis-
sues (175). The most comprehensive report to date was
conducted by Gautam et al. (176), who analyzed more
than 2.8 million transcripts covering 20,000 genes lever-
aged from five different tissues and cell types (epithelial,
blood, induced sputum, T cells, and lymphoblastoids) in
711 males and 689 females. Using tissue-specific meta-
analysis, the authors identified 439 male- and 297
female-specific differentially expressed genes (DEGs) in
all cell types, with 32 genes in common. By linking DEGs
to GWAS data, they identified four male-specific genes
(FBXL7, ITPR3, and RAD51B from epithelial tissue and
ALOX15 from blood) and one female-specific gene (HLA-
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DQA1 from epithelial tissue) that were dysregulated dur-
ing asthma (176). In epithelial cells, the main male-specific
pathway associated with DEGs was hypoxia-inducible
factor-1 (HIF-1) signaling, whereas in females it was IL-17
signaling. The cytokine-cytokine receptor pathway was
shared between sexes in epithelial cells, but no shared
pathways were identified in other tissues. Interestingly,
no sex-specific pathways were identified in sputum (176).

Environmental factors like exposure to allergens, air pol-
lution, and secondhand smoke can exacerbate asthma
symptoms differently in boys and girls (177). Boys tend to
be more affected by these factors early in life; however, as
girls reach puberty, their increased vulnerability may be
linked to hormonal changes. Studies addressing associa-
tions of parental asthma, prenatal environmental tobacco
smoke, and prematurity (particularly very preterm birth)
have determined that all are well-established risk factors
for childhood asthma (178). However, the influence of sex
on these factors has not been fully studied. It is known that
children born prematurely or with lung injuries at birth are
at a higher risk of developing asthma. This factor is particu-
larly relevant for boys, who have relatively smaller airway
diameters compared to lung volumes than girls and who
are more prone to develop neonatal lung disease with pre-
mature birth (179, 180). Preterm infants are also more likely
to develop severe viral infections and have altered micro-
biomes, leading to higher asthma rates (181).

It has also been reported that asthma severity, airway
inflammation, and lung function can vary significantly
over the menstrual cycle in adult women (FIGURE 8).
Premenstrual variation of asthma symptoms has been
reported in 20—40% of females with asthma, manifesting
as lower forced expiratory volume in 1s (FEV,) and more
respiratory symptoms before menses (182-184). This
translates clinically into increased airway hyperrespon-
siveness and a higher rate of urgent healthcare utilization

ovulation

Follicular phase

Estradiol / i E

Progesterone

Luteal phase

(185—188). In some women, the PC20 (i.e., the provocative
concentration of bronchoconstrictor causing a 20% fall in
FEV,) has been shown to decline during the luteal phase
(182, 184). In others, significant airway inflammation mani-
fested by higher fractional exhaled nitric oxide (FeNO)
and sputum eosinophils has been reported in the luteal
phase and midcycle (184, 189, 190). These changes in
lung function over the menstrual cycle have been attrib-
uted to the effect of sex hormones on the cyclical regula-
tion of f2-adrenoceptors and angiogenesis in the lungs,
as well as on immune cell function and inflammation (189,
191). However, to date, evidence-based therapy for pre-
menstrual asthma is still lacking.

During pregnancy, the respiratory system undergoes
significant changes, including lung and chest wall
mechanics, ventilatory patterns, and gas exchange (54,
192). While peak flow rates remain relatively stable in
nonasthmatic pregnant women, lung volumes are
impacted by diaphragmatic elevation and thorax config-
uration changes. In addition, about a third of women
with asthma experience a decrease in asthma symp-
toms when getting pregnant (193). Interestingly, another
third of pregnant women display similar symptoms, and
the remaining third have increased symptoms. Studies
have also found that women with more severe asthma
are more likely to experience an increase in symptoms
during pregnancy compared to those with milder forms
of asthma (194). However, this increase is not sustained
3 months after childbirth, indicating that changes in sex
hormones during pregnancy can impact asthma symptoms
and lung function (40, 193, 195). The specific mechanisms
behind these changes have yet to be fully understood, but
both mechanical effects of the fetus on the airways and
hormonal influences have been suggested. Maternal
asthma can lead to significant health issues for the new-
born, including higher rates of prematurity and intrauterine

FIGURE 8. Menstrual cycle and asthma. Fluctuations in
circulating ovarian hormones (estrogen and progesterone)
during phases of the menstrual cycle are associated with
increased asthma symptoms in women. ED, emergency
department. Figure created with a licensed version of
BioRender.com.
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growth retardation (196). Interestingly, sex differences in
fetal vulnerability have been observed, with female new-
borns of mothers with asthma showing lower birth weights
compared to males (145).

A correlation between obesity and the likelihood of
asthma has also been noted with sex differences.
However, data from studies addressing these associa-
tions are conflicting. For example, two extensive cross-
sectional studies from China and the Netherlands, as well
as two longitudinal cohorts from the United Kingdom and
Taiwan, revealed that childhood asthma is linked to obe-
sity in young girls but not in young boys (197-199). The
UK study monitored children longitudinally until the age
of 8 and discovered that the risk of asthma was higher in
girls with a higher body mass index (BMI) but not in boys
(200). The Taiwan study followed participants prospec-
tively for 12 months and found that asthma incidence was
higher among obese adolescent girls but not boys (201).
This is consistent with findings from Castro-Rodriguez
et al. (202), who reported that girls, but not boys, who
became overweight or obese between ages 6 and 11
were more likely to develop new asthma at age 11. One
cross-sectional study of children aged 5-18 found that
asthma was associated with higher BMI and higher serum
leptin levels, which were higher in girls than in boys. The
authors hypothesized that leptin, which is crucial in regu-
lating body weight, stimulates Th1immune pathways and
proinflammatory cytokine secretion in a sex-specific man-
ner (203). On the other hand, a meta-analysis of six pro-
spective studies revealed that overweight and obese
children were at a higher risk for asthma, and that this
effect was larger for boys than girls (204). Similarly, a
study in children with poorly controlled asthma revealed
that obesity was associated with reduced lung function in
males but improved lung function in females (205).

Interestingly, the negative impact of obesity on asthma
becomes less significant with age. In fact, lung function is
mainly reduced between the ages of 6 and 11 in both
boys and girls. However, between the ages of 12 and 44,
females (but not males) show more significant lung func-
tion impairment related to obesity (206—209). Although
most reports, but not all, suggest a sex difference in the
obese-asthma phenotype, it remains unclear whether
these differences are specifically related to sex hormones
(210, 211). In this regard, two major research initiatives, the
European Network For Understanding Mechanisms of
Severe Asthma (ENFUMOSA) and the Severe Asthma
Research Program (SARP), revealed that adult women
were over four times more likely than men to have severe
asthma compared to nonsevere asthma (142, 212, 213)
and that women with severe asthma had significantly
higher BMI. Meanwhile, BMI did not differ between men
with severe versus nonsevere asthma. Overall, while
most studies suggest an interaction between gender and
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obesity in asthma, with obesity-related asthma typically
emerging later in life, presenting with more severe symp-
toms, and occurring predominantly in women (214), the
underlying mechanisms remain unclear.

More recently, the airway and gut microbiomes have
been implicated in sex-specific asthma phenotype patho-
genesis. Interestingly, both microbiomes differ between
men and women, and a role of the lung-gut axis has been
proposed as a mediator of lung disease pathogenesis
(215-219). A study analyzing induced sputum samples
found that Streptococcus salivarius was significantly
more abundant in women than in men with asthma, and
that lower levels of this bacterium were associated with a
higher likelihood of asthma. Additionally, increased levels
of Lactobacillus species were observed in patients with
asthma compared to healthy controls, and Haemophilus
species were associated with asthma in men and not in
women (220).

Animal models of asthma, including those employing
ovalbumin (OVA) or house dust mite (HDM) challenges,
have consistently shown variability in innate and adaptive
immune responses in males and females (221). Compared
to male mice, females tend to exhibit increased serum IgE
and greater production of Th2 cytokines (e.g., IL-4, IL-5, IL-
13) (221, 222). In HDM-challenged models, female BALB/c
mice also show a Th17-biased response, whereas male
mice demonstrate higher Th2 responses (222). This high-
lights the complexity of immune responses based on sex
and strain. While these animal models have replicated
lung inflammatory patterns observed in humans, inconsis-
tent data have been reported for lung function parameters
(reviewed in Refs. 223 and 156). These parameters not
only show high variability across models but also dual
roles of sex hormones in attenuating or exacerbating air-
way hyperresponsiveness (224).

Gonadectomy studies in mice have also provided valua-
ble insights into the role of sex hormones in lung inflamma-
tion and asthma. Collectively, these studies have replicated
hormone-related phenotypes observed in humans. For
example, gonadectomized male mice exhibited airway
eosinophilia and heightened Th2 inflammation when chal-
lenged with HDM (225) and increased group 2 innate
lymphoid cells (ILC2) cells when challenged with Alternaria
alternata extract (226). This suggests that testosterone
may play a protective role by attenuating Th2 responses
and eosinophilic inflammation. In this regard, the androgen
receptor (AR) has been identified as a key mediator
through which testosterone exerts its effects in the lung
(159, 227-230). On the other hand, studies on gonadec-
tomized females showed decreased levels of IL-5, IL-13,
and total serum IgE, as well as a reduction in eosinophils
and airway hyperresponsiveness in response to allergen
challenge (231-233), indicating that ovarian hormones are
crucial in allergic airway inflammation.
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FIGURE 9. The 4 core genotypes (FCG) mouse model. The FCG model is created by deleting the testis-determining gene (SRY) from the Y chromo-
some and inserting it onto an autosome (nonsex chromosome). As a result, the type of gonad (testes or ovaries) is no longer strictly determined by the
sex chromosomes. This genetic manipulation produces 4 possible combinations: XX mice with ovaries (XXF), XX mice with testes (XXM), XY mice with
ovaries (XYF), and XY mice with testes (XYM). This model enables researchers to determine whether observed sex differences in traits are due to sex
chromosome complement, gonadal hormones, or their interaction. Figure created with a licensed version of BioRender.com.

A useful tool to discern the contributions of sex hor-
mones and sex chromosomes is the four core genotypes
(FCG) mouse model, a genetically engineered system
designed to separate the effects of sex chromosomes
(XX versus XY) from the effects of gonadal sex (testes
versus ovaries) on physiology and disease (FIGURE 9)
(234). In this model, the Sry gene of the Y chromosome,
which triggers testis development, has been moved to an
autosome (chromosome 3), generating four possible
combinations: XX mice with ovaries (XXF), XX mice with
testes (XXM), XY mice with ovaries (XYF), and XY mice
with testes (XYM). By comparing mice with the same type
of gonad but different sex chromosomes (e.g., XXM vs.
XYM), it is possible to identify effects due to sex chromo-
some complement. In contrast, by comparing mice with
the same sex chromosomes but different gonads (e.g.,
XXF vs. XXM), the effects due to gonadal hormones can
be identified. Recent studies using the FCG model in the
context of HDM challenge and asthma have identified
the predominant effect of female gonadal hormones on
lung inflammation, with notable differences across geno-
types and unique pathways affected by sex hormones
and sex chromosomes (235-237).

Overall, from childhood to adulthood, biological sex is
a key factor in asthma phenotypes. Multiple mechanisms
involving gene expression regulation and actions of
gonadal hormones have been postulated, particularly
in inflammatory and immune pathways (FIGURE 10).
Understanding the interplay between sex hormones
and asthma can lead to future personalized therapeu-
tic strategies that consider these hormonal influences.

3.4. Chronic Obstructive Pulmonary Disease

Chronic obstructive pulmonary disease has traditionally
been thought of as a disease affecting older men (238).
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However, over the past two decades, it has become
increasingly clear that a significant number of women
are also affected by the disease (239-243). The preva-
lence of COPD and hospitalizations related to it has
risen among women, partly due to increased rates of
tobacco use across the globe (244-248). Some data
even suggest that women may be more susceptible to
the harmful effects of smoking (249-251), although
recent data suggest that nonsmoking women are also
more likely to develop COPD (252, 253). Itis also recog-
nized that the clinical presentation and progression of
the disease differ between sexes (239). Evidence sug-
gests that women develop the disease earlier in life,
have fewer pack-years of smoking at the time of diagno-
sis, and experience more frequent respiratory exacerba-
tions (254, 255). There is also emerging evidence of
sex-related differences in the underlying pathophysiol-
ogy of the disease, including variations in cytokines, pro-
teomics, and metabolomics, which could contribute to
differences in how the disease presents clinically.
Clinical data also revealed that women were significantly
more affected by COPD despite minimal tobacco smoke
exposure (256-259). This sex bias has resulted in a
decrease in the mortality rate of men with COPD in the
United States, while there has been no change among
females (260, 261).

COPD presents a critical public health challenge, as
recent research suggests that women have heightened
biological susceptibility to nicotine addiction and envi-
ronmental risk factors compared to men (260, 262). The
impact of COPD on women also varies significantly
between developed and developing nations. In devel-
oping countries, women face a dual burden: not only
tobacco use but also extensive exposure to indoor air
pollution from cooking with biomass fuels (263, 264).
Among female smokers, mortality risk escalates with
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FIGURE 10. Sex-specific factors and mechanisms of
childhood and adult asthma. Genetic, immune, hormonal,
environmental, and physiological factors affect asthma
susceptibility across the life span. The main mechanisms
differentially affected by sex hormones involve lung
immune responses to allergen challenges and regulation
of signaling pathways. AR, androgen receptor; BMI, body
mass index; HIF-1, hypoxia-inducible factor-1; SNPs, single-
nucleotide polymorphisms.
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both cigarette consumption and earlier onset of smok-
ing (265, 266).

Anatomical differences between males and females
contribute to the disparities observed in COPD. Females
typically have smaller airways and lung volumes, which
can lead to greater respiratory constraints during exer-
tion (254). This difference necessitates a higher ventila-
tory effort for females compared to males, contributing
to increased dyspnea. The inflammatory response to
cigarette smoke also appears to differ between sexes,
potentially due to hormonal influences (267). Females
exhibit heightened inflammatory responses character-
ized by increased levels of cytokines such as IL-5 and IL-
13, which are associated with allergic inflammation and
could contribute to the severity of symptoms (268).
Estrogen is believed to influence lung function and the
progression of COPD, and interact with oxidative stress
pathways, such as those involving NADPH oxidase 4
(NOX4) (9, 269). Conversely, testosterone may offer pro-
tective benefits against COPD. A recent study assessing
lung tissue gene expression and DNA methylation from
the Lung Tissue Research Consortium identified sex dif-
ferences in COPD-related gene regulatory networks,
along with sex-specific expression of extracellular matrix
genes (including ITGA7, ITGAS, ITGAMN, ITGB3, ITGBS5,
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and SV2B) that were associated with emphysema
severity, cigarette smoke, aging, and lung function
(270). Another study using the using the Canadian
Longitudinal Study on Aging (CLSA) baseline compre-
hensive and genomic data found 28 distinct signals
for a genome-wide SNP-by-sex interaction COPD
outcomes, including 8 SNPs in males located in or
near the MAGI1, COX18, OSTC, ELOVL5, C7orf72
FGF14, and NKAIN4 genes, and 4 SNPs in females
located in or near genes CAMTA1, SATB2, PDE10A,
and LINCO0908 (271). The authors concluded that
elucidation of functional sex-specific roles of these
signatures may help improve disease endotyping in
male and female patients and develop more person-
alized therapeutics.

Mouse models of COPD typically involve chronic
cigarette smoke exposure (243). Although most ani-
mal models of COPD cannot be directly extrapolated
to human phenotypes, they have revealed significant
sex differences in disease progression and manifesta-
tion (254, 267). In these models, female mice tend to
develop more small airway disease, airway inflamma-
tion, airflow obstruction, and airway remodeling, while
male mice are more prone to emphysema (272).
These differences are linked to both structural and
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molecular mechanisms, including variations in airway
size, extracellular matrix gene regulation, and inflam-
matory cell profiles between sexes. Importantly, gona-
dectomized females display male-like phenotypes,
suggesting a role of female sex hormones in sex-spe-
cific COPD mechanisms. Continued refinement of
these models will enhance their relevance and applic-
ability to human health issues related to COPD and
address sex-specific mechanisms.

3.5. Lung Cancer

Lung cancer is the second most diagnosed cancer in
men and women worldwide (273). It is also the leading
cause of cancer mortality for both men and women.
While tobacco use has been closely associated with
lung cancer in both males and females, honsmoking
women are more likely to develop lung cancer than
nonsmoking men (9, 274). There is also a higher
occurrence of squamous cell carcinoma in males and
a higher occurrence of adenocarcinoma in females
(275). Moreover, there has been a rise in the number
of deaths related to lung cancer in women but not in
men (276). Even with lower tobacco use rates, women
smokers are also more likely to develop lung cancer
than men.

Female sex hormones are believed to play a role in
this phenomenon, leading to molecular aberrations
resulting from the carcinogenic effects of tobacco, as
well as modulating the metabolism of tobacco-con-
taining toxins (277-281). For example, estrogen syner-
gizes with some tobacco compounds through the
induction of CYP1B1, leading to enhanced reactive
oxygen species formation and carcinogenesis (282,
283). There have been numerous reports on the asso-
ciation between sex hormones and lung cancer (277,
284, 285). These studies have shown that estrogen
can be produced by lung cancer cells and induce cell
proliferation (286). In line with the idea that estrogens
promote lung cancer, a noticeable increase in lung
cancers was observed in males who were adminis-
tered estrogens to treat heart disease, prompting the
early termination of the clinical trial (287). Estrogens
can also influence the effects of other carcinogenic
factors, such as smoking-related genetic mutations
(288). The role of estrogens in promoting cancer is fur-
ther supported by the frequent expression of estrogen
receptors in lung cancers and by their ability to stimu-
late lung cancer growth directly or indirectly via aro-
matase in cell culture studies (289). These findings
suggest that estrogen contributes to lung cancer
growth both in clinical settings and experimental mod-
els. Estrogen has also been shown to promote cell
proliferation and tumor growth. Thus, anti-estrogen
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treatment strategies have been implemented to dec-
rease tumor size, growth, and cell proliferation, lead-
ing to improved patient outcomes (290, 291). For
example, a study using antiestrogen for breast cancer
patients revealed a reduced risk of subsequent lung
cancer in older patients, suggesting that antiestrogen
therapy can modify lung cancer carcinogenesis in
older women (292). There have also been reports on
progesterone inhibiting lung cancer growth in vivo
and higher levels of testosterone being associated
with higher lung cancer risk (293-295). Moreover,
progesterone has also been shown to play a potential
role in the development of lung cancer, as its recep-
tors are commonly expressed in nontumor tissues
compared with malignant lung tissue (296-298).
Finally, testosterone has been reported to potentiate
cancer-promoting effects of estrogen while suppress-
ing overall immune responses (299-301). While a role
of androgen receptors has been postulated (302),
more research studies and clinical trials are needed to
determine therapeutic options considering gonadal
hormones in lung cancer (303, 304).

Genetic differences have also been identified between
lung cancers in men and women, with women more fre-
quently having lung cancer with driver mutations in the
EGFR, ALK, or KRAS genes (305-307). A few studies
have indicated that female patients with lung cancer
are more likely to harbor EGFR mutations compared to
their male counterparts (308-310). Women with ALK-
positive lung cancers also tend to be younger than
their male counterparts and are often nonsmokers (311,
312). This demographic is particularly prevalent in Asian
populations, where studies have shown that ALK rear-
rangements account for a significant portion of muta-
tions in lung adenocarcinoma (309, 313). Female
smokers also tend to have higher levels of aromatic/
hydrophobic DNA adducts and greater expression of
CYP1A1in lung tissue compared to males (314), leading
to increased metabolism of polycyclic aromatic hydro-
carbons (PAHs) from cigarette smoke into carcinogenic
intermediates. Despite lower exposure to tobacco car-
cinogens, female smokers show higher levels of PAH-
DNA adducts, potentially due to estrogen’s role in cell
proliferation (315). Moreover, females generally metab-
olize nicotine faster, partly because of enhanced
CYP2AG6 activity linked to higher estrogen levels (316,
317). Research has also shown that the X-linked gas-
trin-releasing peptide receptor (GRPR), which promotes
cell proliferation, is more highly expressed in female
nonsmokers than in males. Additionally, female smok-
ers exhibit higher GRPR expression at lower levels of
tobacco exposure, suggesting that two copies of the
GRPR gene might increase susceptibility to lung cancer
in women (318, 319). The methylation profiles of genes
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in lung adenocarcinoma exhibit a female bias, involving
categories linked to interferon-alpha response, TGFp,
and TNFa signaling, as well as apoptosis (320).

The landscape of lung cancer is changing, with
increasing incidence rates among younger women and
notable differences in histology and outcomes com-
pared to men. Continued research into the biological
underpinnings of these sex differences is essential for
developing personalized approaches to prevention,
diagnosis, and treatment. Understanding the interaction
of hormones and expression of sex-specific genes with
environmental factors can lead to better-targeted inter-
ventions that consider the unique characteristics of male
and female patients.

3.6. Obstructive Sleep Apnea

Obstructive sleep apnea is a sleep disorder charac-
terized by repeated episodes of partial or complete
blockage of the upper airway during sleep. The prev-
alence and severity of OSA are higher in men com-
pared to women, with male-to-female ratios ranging
from 2:1to 3.5:1in the general population (46). This
has been related to anatomical differences leading
to increased airway compliance and collapsibility in
men compared to women (321). Like with other condi-
tions described earlier, the disease incidence is simi-
lar between sexes before puberty. However, after
puberty, the pathogenesis of OSA diverges, and OSA
becomes more common in males than females (321).
The lower risk and severity in postpubertal girls have
been related to the protective effect of female sex
hormones on airways and ventilatory drive. This is
further demonstrated by the increased rates of OSA
in women postmenopause (322), as well as reduced
OSA symptoms in transgender women receiving
estrogen therapy (323). One additional proposed
mechanism in females involves progesterone, which
is known to increase the tone of the upper airway
muscles and stimulate ventilation by increasing the
chemoreceptor response to hypoxia and hypercap-
nia (324). In addition, studies in hypogonadal men
and obese men with low testosterone levels revealed
that androgens may be protective for OSA (325).

4. SEX DIFFERENCES IN LUNG PHYSIOLOGY

Sex differences in the lung have been reported as early
as during fetal development. Female fetuses display
smaller airways and fewer bronchi than male fetuses.
After birth, a higher ratio of large to small airways char-
acterizes female neonates with higher flow rates and air-
way conductance than males. This has been attributed
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to the surfactant action of maintaining patency of the
smaller airways.

These differences continue throughout adult life,
resulting in larger male lungs containing smaller airways
(65). Indeed, women'’s airway luminal areas and length
are 20-30% and 10-14% smaller than men’s, respec-
tively (326). Interestingly, the differences in airway size
between sexes were first noted in 1894 by Ellis (327),
where it was reported that “in nearly every dimension
man’s larynx is larger, the entire male larynx being about
one third larger than the female.”

The lungs of girls and women are generally smaller
than those of boys and men of the same height.
However, when measuring lung function parameters,
females tend to have higher forced expiratory flow
rates than males (after normalizing for differences in
body size). In fact, the ratios of forced expiratory vol-
ume in 1 s (FEV,) to forced vital capacity (FVC) are
higher for girls and women. This is because when the
lung develops and grows, a disproportional scaling of
airway dimensions relative to lung size can occur,
resulting in a mismatch between the airway lumen cal-
iber and lung volume, a concept known as dysanapsis
(from Greek: dys = unequal and anaptixy = growth)
(180) (FIGURE 11). While males are more likely to have
isotropic lung growth, females tend to experience
higher rates of dysanapsis.

Overall, three main factors contribute to the sex differ-
ences in airway structure and function: 7) dimensional
factors, addressed with the concept of dysanapsis dur-
ing lung growth; 2) immune factors, associated with sex
differences in lung inflammation, atopy, and infection;
and 3) hormonal factors, such as influences of reproduc-
tive cycles, puberty, menopause, and pregnancy.

We elaborated on these in detail in the sections
below.

4.1. Dimensional Factors: Sex Differences in Lung
Development

Lung development in humans is a well-established pro-
cess involving several stages (328-330). The lung
begins to grow from the foregut endoderm at an early
stage of gestation, progresses to establish conducting
airways by birth, and continues alveolar development
for up to 8 years postnatally (330). There are five major
stages during development: embryonic, pseudo-glandu-
lar, canalicular, saccular, and alveolar (FIGURE 3). The
embryonic stage initiates at 3—7weeks of GA and is
characterized by the primary right and left lung bud for-
mation. From 5 to 17 weeks of GA, the pseudo-glandular
stage occurs, where branching morphogenesis estab-
lishes the airway tree and cellular differentiation begins.
Fetal breathing begins once tracheal cartilage, smooth
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Sex differences in lung growth and dysanapsis. Male and female embryonic/fetal (blue) and postnatal (yellow) lung development presents

sex-specific characteristics. A timeline of sex-specific features related to lung growth and respiratory mechanics is shown. GA, gestational age; w,

week. Figure created with a licensed version of BioRender.com.

muscle, and blood vessels develop (331). In the follow-
ing canalicular stage, ranging from 16 to 29 weeks of
GA, epithelial branching and cell differentiation occur,
giving rise to alveolar epithelial cells alongside a capil-
lary network around distal epithelial airspaces. In the
subsequent saccular stage, at 24-38 weeks of GA,
branching morphogenesis ends, and saccules form at
the ends of airways. Alveolar epithelial cells begin to
differentiate into AT2 cells, which produce surfactant.
The final stage is alveolarization, starting at 32 weeks
of GA and continuing through adolescence, when
alveoli are fully formed and their surrounding capillary
network matures. As indicated in the prior sections,
lung development is a process that is heavily influ-
enced by sex hormones, including maternal and fetal
steroids (FIGURES 3 AND 4). Recently, Savchuk et al.
(58) identified testosterone presence in embryos as
early as 6—7 weeks of gestation, with levels peaking
between weeks 11 and 14. The delay in male versus
female fetuses due to the actions of sex hormones (31)
provides an advantage in premature birth for female
newborns, leading to sex differences in lung disease
susceptibility (31, 332).

Anatomical differences may also explain the observed
sex-specific physiological responses in infancy and
puberty. At birth, male babies have larger lungs than
females, with more respiratory bronchioles (333).
However, the female airways and their lung paren-
chyma grow more proportionately than those of
males throughout infancy, childhood, and adoles-
cence (65, 334). Because early postnatal lung devel-
opment involves exponential increases in the number
and size of alveoli, the female lung is smaller com-
pared to the male lung, and the male’s total number
of alveoli and surface area is consistently higher
throughout childhood. As a result of these growth pat-
terns, airway resistance is lower in females, resulting in
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higher forced expiratory flow rates, giving an advantage
to prepubertal girls versus boys regarding airflow. While
males have larger lungs and longer airways, they are at
a disadvantage for expiration. Then, after puberty, adult
men’s and women’s expiratory flow rates become com-
parable. Additionally, lung development is influenced by
the timing of puberty. Later pubertal age is also associ-
ated with a lower risk for asthma-like symptoms in early
adulthood (156, 335, 336).

4.2. Immune Factors: Sex Differences in Lung
Immunity

Throughout the different life stages, males and females
display distinct immunological responses to foreign and
self-antigens, exhibiting differences in both innate and
adaptive immunity (337, 338). Like lung diseases, sex dif-
ferences in lung immunity can start as early as infancy or
emerge after puberty and are often attributed to hormo-
nal influences (339-342). Furthermore, environmental
exposures and exercise can impact immune function in a
sex-specific manner (146, 147, 343). Notably, these sex-
based immunological distinctions may play a role in the
varying occurrence of autoimmune diseases, cancers,
susceptibility to infection, and responses to vaccines
(344, 345). Overall, females tend to mount stronger lung
immune responses with higher basal immunoglobulin lev-
els, antibody responses, and B-cell counts than men
(346). However, while the stronger immune responses in
females may contribute to faster pathogen clearance,
they can also increase susceptibility to chronic inflamma-
tory and autoimmune lung diseases (347).

Numerous reports indicate sex differences in respira-
tory infections (348, 349). While the exact mechanisms
are not fully understood, strong evidence suggests that
males are more susceptible to respiratory infections and
have a harder time recovering compared to females,
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except for some upper respiratory tract infections (350).
Variations in lung structure and function, as well as the
influence of sex hormones, may explain these differences
in susceptibility and response to respiratory infections (6,
351). For example, differences in lung development and
maturity due to sex hormones may contribute to the
higher frequency of lower respiratory tract infections in
young males (261). Estrogens lead to more effective
immune responses, while androgens reduce immune
competence, making males more susceptible to infection
(158, 340, 352, 353). It is also important to consider the
influence of cyclical changes in female sex hormone con-
centrations, particularly during the menstrual cycle and
pregnancy, on the immune response to respiratory infec-
tions (354-356). Reports have indicated that specific
respiratory symptoms (wheezing, cough, and shortness
of breath) were most frequent in women at the mid-luteal
to midfollicular phases (357). Also, physiological changes
during pregnancy can increase susceptibility to viral infec-
tions, with a higher risk of pulmonary infections for preg-
nant women (358). Genetic and chromosomal factors
also contribute to observed differences in susceptibility
to infection, as several immune-cell-related genes are
located on the X chromosome (337, 359). In this regard,
X-chromosome inactivation, an epigenetic mechanism
ensuring the silencing of one X chromosome in female
individuals, may also contribute to the observed sex dis-
parities in lung infection (52, 360).

Respiratory infections are a significant cause of illness
and death in people of all ages. Research has indicated
that immunity to viruses may vary with changes in hor-
mone concentrations due to fluctuations during the
menstrual cycle, contraception use, pregnancy, and
menopause (340). While males generally experience
more severe lower respiratory tract infections, females
seem to be more prone to upper respiratory infections
(351). Sex differences in infection rates and outcomes
have been postulated due to genetic, hormonal, ana-
tomical, and immunological factors (361-364). In infancy,
boys are more likely to be affected by respiratory syncy-
tial virus (RSV) compared to girls (365), resulting in more
frequent and severe cases of bronchiolitis and often
associated with a higher risk of wheezing, childhood
asthma, and hospitalization (366, 367). Regarding other
common infections, such as influenza, studies have
shown that there are sex differences in influenza sever-
ity, mortality, vaccine tolerance, responses, and out-
comes (368). Interestingly, males are more susceptible
to infection than females, and females have greater
immune responses but experience more adverse reac-
tions to influenza vaccines than males (344, 369).

Sex-specific immune responses to various viral patho-
gens have been documented in recent studies (360,
370-373). Previous outbreaks of coronaviruses such as
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severe acute respiratory syndrome (SARS) and Middle
East respiratory syndrome (MERS) have shown higher
fatality rates in males compared to females (374-376).
However, COVID-19 revealed sex differences in hospi-
talizations, intensive care unit admissions, and deaths,
with a significant male predominance (377, 378), partially
mediated by the androgen effects on the TMPRSS2
gene (379). In addition, sex differences in the immune
response to SARS-CoV-2 showed higher levels of proin-
flammatory cytokines and chemokines in males with
mild disease, while females displayed higher activation
of adaptive immunity pathways (380). These differences
were attributed to a combination of hormonal and chro-
mosomal factors playing a role in the immune response
to the viral infection (381). Additionally, long-term conse-
quences of COVID-19, such as postacute sequelae of
COVID (PASC), have been reported with higher rates in
female than male patients (382, 383).

4.3. Hormonal Factors: Sex Steroids and Lung
Disease

Sex steroids are primarily produced by three central
organ systems: the gonads, the adrenal glands, and the
fetoplacental unit (65). They are also metabolized in sev-
eral nonendocrine peripheral tissues and organ systems
(2, 384). The local production of sex steroids within spe-
cific tissues, mainly from nongonadal sources, depends
on the concentration of the enzymes in cholesterol
metabolism (385, 386). The first step in the synthesis of
sex steroids is the conversion of cholesterol to pregnen-
olone via the cholesterol side-chain cleavage enzyme.
After a cascade of downstream metabolic conver-
sions, two active sex steroids are created: testoster-
one and estradiol. Several other estrogenic and
androgenic precursors are assembled along the path-
way, some of which are metabolized into active pre-
cursors by cytochrome enzymes (162). Each of these
sex steroid hormones acts mainly through specific
receptors to mediate sex steroid-dependent actions
(233, 387-389). Importantly, all the sex steroid recep-
tors have been detected in lung tissue.

Due to their diverse nature, the role of sex hormone
signaling in lung function and disease states is still
inconclusive. Multiple studies have reported proinflam-
matory and anti-inflammatory effects in different cell
types and life stages (150, 158, 390-393). While andro-
gens have been shown to have primarily inhibitory
effects, estrogens have been linked to the protective
impacts on fetal lung maturation. This suggests a defi-
nite physiological role for sex steroids in the lungs
before birth. Additionally, fetal lungs undergo specific
changes during the third trimester to prepare for life out-
side the womb, some of which can be attributed to the
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effects of sex steroids (6). These changes can also
impact lung health in adults (394).

As mentioned in the sections above, studies have
found that respiratory allergic diseases are more preva-
lent in males during childhood (150, 159, 395, 396).
Evidence suggests that androgens like dehydroepian-
drosterone (DHEA) and its sulfate metabolite, DHEA-S,
decrease with age and are associated with airway dis-
eases (23, 397-399). However, the impact of sex ste-
roids on the prepubertal age group is unclear and
requires further study. Further research is also needed
to explain the observed sex differences in the preva-
lence and severity of lung diseases during adolescence
(400, 401). Additionally, understanding the differences in
disease mechanisms as individuals mature into puberty
is essential.

5. ENDOGENOUS AND EXOGENOUS SEX
HORMONES AND LUNG DISEASE

As discussed in prior sections, sex hormones, particu-
larly estrogens and androgens, have significant and
complex effects on lung physiology and various lung
diseases. Both endogenous fluctuations in circulating
hormone levels due to physiological events (e.g.,
puberty, reproductive cycles, menopause, pregnancy)
or changes due to exogenous hormone administration
(e.g., oral contraceptive use, hormone replacement ther-
apy, hormonal treatment of gender dysphoria) can
impact lung disease presentation and symptoms. Many
studies in this field suggest that asthma severity varies
during the reproductive state, menstrual cycle, and
pregnancy in females (40, 402, 403). Similarly, studies in
patients with cystic fibrosis (CF) suggest that symptoms
vary during the menstrual cycle and are affected by sex
hormone levels (191, 404—406). We expand on these
topics in the sections below.

5.1. Puberty and Lung Disease

During puberty, sex steroids cause significant changes
that lead to sexual maturation. Apart from the differen-
ces in physical and sexual characteristics between
males and females, there is an intriguing role of sex ste-
roids in lung health and disease. There is a higher num-
ber of lung-related hospital admissions for boys than for
girls, but after puberty, a gender switch occurs. For
example, in asthma cases following childhood, severity
decreases postpuberty and into early adulthood only
among males, while asthma incidence increases in
females during late adolescence (5, 335, 403). Studies
have indicated that the trend is more common in chil-
dren with mild to moderate asthma, who tend to
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“outgrow” their asthma during puberty and into adult-
hood. Moreover, early-onset menarche in some females
suggests a likely differential role of sex steroids among
individuals, as females with early-onset menarche have
cumulatively higher levels of estrogen and progesterone
(16, 336, 407).

Severe asthma is equally likely to improve with puberty
in both boys and girls when androgen levels, dehydroe-
piandrosterone sulfate (DHEA-S), increase in both sexes
(23). This suggests that the beneficial role of increasing
androgen levels during adolescence exceeds the adverse
respiratory effects of female hormones (159, 408). Recent
research has explored the potential of DHEA as a ther-
apeutic agent in specific patient populations. A pilot
study showed that women with asthma and low DHEA-S
(<200 pg/dL) experienced improved lung function with
oral DHEA-S supplementation (409). Similarly, inhaled
(nebulized) DHEA-S has also shown benefit in moder-
ate-to-severe asthma, improving asthma control ques-
tionnaire scores in a randomized, placebo-controlled
trial over six weeks, with a favorable safety profile and
no significant hormonal side effects (410).

5.2. Menopause and Lung Disease

Sex differences also manifest in the aging lung.
Physiologically, aging results in a reduction of elastic
recoil of the lungs and increased alveolar air volume
(411, 412). Circulating concentrations of sex steroids also
decrease steeply. The abundance of connective tissue
also increases, leading to impaired respiratory function,
which is more pronounced in males (413). Aging also
influences chronic lung diseases such as acute lung
injury, acute respiratory distress syndrome (ARDS), IPF,
and COPD, which become more prevalent as age
advances (414, 415). Menopause is associated with lower
levels of estrogen and progesterone, which coincides
with new asthma onset (416, 417). The relationship
between menopause and asthma is quite varied and
may be influenced by other health conditions, such as
obesity and the use of hormone replacement therapies.
Furthermore, women going through perimenopause
have been found to experience reduced lung function
and increased asthma symptoms (416). These findings
highlight the importance of further research into how
ovarian hormones affect asthma in women at different
stages of reproductive life.

5.3. Exogenous Hormones and Lung Disease

Exogenous administration of sex hormones through oral
contraceptive use, hormone replacement therapy, or
treatment of gender dysphoria can also affect lung
health. Data from observational studies and clinical trials
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revealed the effects of exogenous hormones in a variety
of lung diseases, including asthma, CF, PH, and lung
cancer (418—422). Regarding asthma, there have been
only a few studies that have looked at how the use of
hormonal contraceptives affects risk. Some studies have
found no link between using any hormonal contraceptive,
including combined oral contraceptives, and asthma or
asthma symptoms. Other studies have shown a decreased
risk, while some have observed an increased risk of
asthma, wheezing, and other allergies (423-425).
However, it is not clear whether different types of hor-
monal contraceptive formulations may have different
effects on asthma, as research on the topic is limited.
Among postmenopausal women, both estrogen-only
and estrogen/progesterone hormone replacement
preparations have been linked to an increased risk of
asthma, as well as having contrasting effects (407, 426,
427). In terms of PH and CF, oral contraceptive use
appears to show beneficial effects, although studies
are limited and conducted with low numbers of partici-
pants (428). While several contradictory studies have
discussed the effects of oral contraceptive use on lung
cancer, a recent analysis on cohorts of women who
either never smoked or were smokers showed that oral
contraceptive use was associated with an increased
risk of developing lung cancer (429, 430). Regarding
the care of transgender patients receiving hormone
therapy and its impact on lung disease outcomes,
research is even more limited, with a few reports of
increased rates of asthma and CF symptoms (22, 431).

6. CURRENT CHALLENGES AND GAPS IN
KNOWLEDGE

Almost a decade after the establishment of the 2016 NIH
policy encouraging researchers to consider sex as a bio-
logical variable when designing studies and assessing
results, several key research gaps persist in our under-
standing of the role of sex and sex hormones in lung dis-
ease susceptibility and outcomes (432, 433). First, there is
a need for more mechanistic studies addressing the bio-
logical underpinnings of a wide variety of lung diseases.
Specifically, more studies are needed to elucidate the
roles that sex hormones (e.g., estrogen, testosterone, pro-
gesterone) and sex chromosomes play in lung disease
development and progression. Second, research gaps
continue to exist in understanding how sex hormones
influence lung health change across the lifespan, including
during key transitions like puberty, pregnancy, and meno-
pause. Third, more data are needed to understand how
sex hormones affect responses to treatments for lung dis-
eases. Studies examining potential sex differences in ther-
apeutic efficacy and side effects are required in order to

personalize treatment for different patient populations.
While sex differences in asthma pathophysiology and type
2 inflammation biomarkers exist, these have not translated
into clinically significant differences in response to T2 bio-
logics in the available studies (434, 435). However, most
clinical trials have included more women than men, reflect-
ing the higher prevalence of severe asthma in adult
women, but few trials have analyzed efficacy outcomes
separately by sex (436). Additionally, more studies are
needed to understand how sex hormones interact with
genetic, environmental, and lifestyle factors to influence
lung disease risk and progression, as well as on the inter-
section of sex and gender in disease risk and presentation
(437). This is particularly important as environmental chal-
lenges such as air pollution and comorbidities such as obe-
sity and nutritional challenges are on the rise. Finally, there
are multiple gaps in our ability to translate basic science
findings on sex hormone effects into clinical applications
for lung disease prevention, diagnosis, and treatment, par-
ticularly in transgender patients. Additional studies are
needed to develop sex-specific or hormone-based strat-
egies for personalized lung disease management (35).
Addressing these crucial research gaps could significantly
advance our management and prevention of sex-based
differences in lung diseases and lead to improved, tailored,
and equitable approaches for treatment.

7. CONCLUSIONS

Sex differences significantly affect lung health throughout
life, beginning as early as lung development during gesta-
tion. Male and female sex hormones affect lung develop-
ment and function at different stages. For instance, female
sex hormones have been found to enhance alveologene-
sis and promote lung maturation during late gestation and
early neonatal periods, whereas androgens seem to have
the opposite effect. However, after puberty, higher levels
of androgens have been associated with improvement in
conditions such as severe asthma. This demonstrates the
complex and dynamic interplay of sex hormones on lung
health, contributing to disease prevalence and severity
variations between males and females. Despite extensive
evidence from epidemiological and research studies sup-
porting the role of sex hormones in multiple lung diseases,
the potential of hormonal modifications in treating these
conditions remains an area of limited exploration. This
presents an exciting opportunity to advance personalized
medicine beyond conventional therapeutic approaches.
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