

SEX, HORMONES, AND LUNG HEALTH

Sex, hormones, and lung health

Lung inflammation Immune response Response to environmental exposures Lung disease susceptibility Response to treatment

AUTHORS

Patricia Silveyra, Maksat Babayev, Carolyn Damilola Ekpruke

CORRESPONDENCE

psilveyr@iu.edu

KEY WORDS

lung disease; lung inflammation; sex chromosomes; sex hormones; sex steroids

CLINICAL HIGHLIGHTS

- The health of men and women is profoundly influenced by biological sex, which can also intersect with gender (a social construct).
- Sex differences are evident in multiple lung diseases across the lifespan, with some conditions switching patterns during puberty or menopause and/or almost exclusively affecting female patients.
- While some lung conditions are more common in women, cause different symptoms, and are more likely to be fatal in women than in men, sex-specific treatments and prevention strategies are not yet available.
- Integrating sex analyses in research studies is fundamental, going beyond simply including women in clinical trials and female subjects in experimental designs.
- The role of sex hormones in women's health during key life stages (e.g., menstrual cycles, pregnancy, menopause) remains unclear. Still, it is crucial in conditions affected by female steroids, such as asthma and responses to environmental challenges.
- In situations unique to women, as well as during life events affecting both sexes, such as puberty and aging, the distinct impacts of female and male sex hormones contribute to their complex and multidimensional connections to lung function.
- Both endogenous and exogenous hormones can influence lung disease mechanisms, responses to environmental challenges, and lung disease therapeutics. Understanding these mechanisms is key to improving disease prevention and outcomes.

SILVEYRA ET AL., 2026, *Physiol Rev* 106: 53–86 August 6, 2025; Copyright © 2026 the American Physiological Society. https://doi.org/10.1152/physrev.00026.2024

REVIEW ARTICLE

SEX, HORMONES, AND LUNG HEALTH

Patricia Silveyra,^{1,2} Maksat Babayev,¹ and Carolyn Damilola Ekpruke¹

¹Department of Environmental and Occupational Health, Indiana University School of Public Health, Bloomington, Indiana, United States and ²Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States

Abstract

american physiological society*

> Sex plays an essential role as a biological variable in lung health, leading to observed differences in lung disease susceptibility. Some respiratory conditions are more common in women than men, especially after puberty, indicating the influence of ovarian hormones on disease mechanisms. Other conditions display sex disparities that begin in utero and progress throughout the life span. Preclinical and clinical studies have indicated that both sex chromosomes and hormones can influence lung disease outcomes, immune responses, susceptibility to viral and bacterial infection, and responses to environmental challenges. This review summarizes the latest research on how sex affects lung physiology and health, drawing on a wide range of studies in respiratory physiology and anatomy, genetics, molecular and cellular biology, environmental health, and immunity. We emphasize how biological sex, gonadal hormones, and occupational and environmental exposures can impact disease mechanisms and outcomes. As clinical outcomes among women have not improved at the same rate as men over the past few decades, it is crucial to understand the role played by the sex variable in designing strategies to prevent and mitigate disease. The collective research indicates that sex-induced differences in the respiratory system are essential determinants of physiological responses and clinical outcomes.

lung disease; lung inflammation; sex chromosomes; sex hormones; sex steroids

1.	INTRODUCTION	53
2.	SEX AND GENDER VARIABLES AND THEIR	53
3.	SEX DIFFERENCES IN LUNG DISEASE	54
4.	SEX DIFFERENCES IN LUNG PHYSIOLOGY	66
5.	ENDOGENOUS AND EXOGENOUS SEX	69
6.	CURRENT CHALLENGES AND GAPS IN	70
7.	CONCLUSIONS	70

1. INTRODUCTION

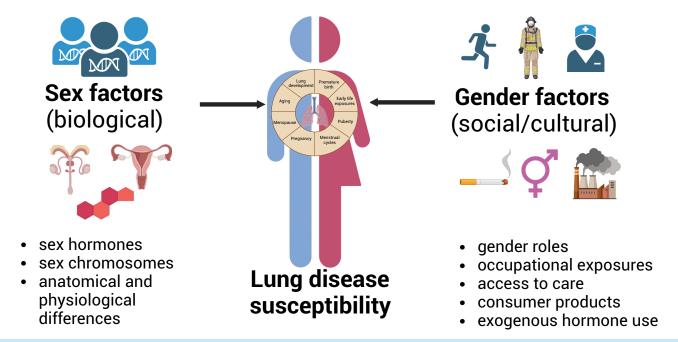
The respiratory system exhibits intrinsic anatomical and physiological sex differences that affect lung disease development, manifestation, and severity across the life span (1–9). Appreciating these sex differences is crucial to understanding the mechanisms of disease development and response to treatment and developing personalized therapies (10–16). Starting from the embryonic stages and continuing over the life course, the sex variable significantly influences the development of the respiratory system and its response to endogenous and exogenous factors. Overall, ample epidemiological, clinical, and experimental data emphasize the need to study sex differences in the lung and the regulatory roles of sex hormones. Understanding these concepts is essential not only to appreciate intrinsic sex differences in normal pulmonary physiology across age groups but also to gain insights into disease development and the development of sex-based therapies.

2. SEX AND GENDER VARIABLES AND THEIR INFLUENCE ON LUNG HEALTH

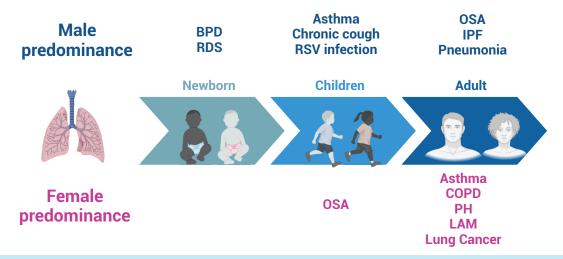
While the terms "sex" and "gender" are often used interchangeably, they refer to distinct concepts (FIGURE 1). Sex pertains to the biological differences between males and females, including sex organs, hormones, anatomical and physiological variances, and sex chromosomes. Biological sex can influence physiological aspects underlying respiratory disease and response to environmental challenges. On the other hand, gender is a broader concept encompassing social roles, behaviors, expectations, and identities within historical or cultural contexts (17–20). As such, gender can influence environmental responses and disease processes due to occupational or social roles, as well as exposure to exogenous hormone treatments (21–23). Moreover, sex and gender can intersect to influence lung disease outcomes (24, 25).

In medicine, understanding how gender is influenced by culture, work environments, and psychosocial exposures is crucial for providing comprehensive healthcare. While it has been shown that sex can affect certain diseases differently due to biological, genetic, and hormonal

CLINICAL HIGHLIGHTS


- The health of men and women is profoundly influenced by biological sex, which can also intersect with gender (a social construct).
- Sex differences are evident in multiple lung diseases across the lifespan, with some conditions switching patterns during puberty or menopause and/or almost exclusively affecting female patients.
- While some lung conditions are more common in women, cause different symptoms, and are more likely to be fatal in women than in men, sex-specific treatments and prevention strategies are not yet available.
- Integrating sex analyses in research studies is fundamental, going beyond simply including women in clinical trials and female subjects in experimental designs.
- The role of sex hormones in women's health during key life stages (e.g., menstrual cycles, pregnancy, menopause) remains unclear. Still, it is crucial in conditions affected by female steroids, such as asthma and responses to environmental challenges.
- In situations unique to women, as well as during life events affecting both sexes, such as puberty and aging, the distinct impacts of female and male sex hormones contribute to their complex and multidimensional connections to lung function.
- Both endogenous and exogenous hormones can influence lung disease mechanisms, responses to environmental challenges, and lung disease therapeutics. Understanding these mechanisms is key to improving disease prevention and outcomes.

variations, gender can influence healthcare-seeking patterns and response to treatment (26–28). Similarly, changes in gender roles and expectations can alter disease prevalence patterns over time. For instance, as more women have entered the workforce and used tobacco products, patterns of associated lung disease


prevalence have shifted, which may necessitate reevaluating environmental and occupational policies and air quality standards (21, 29).

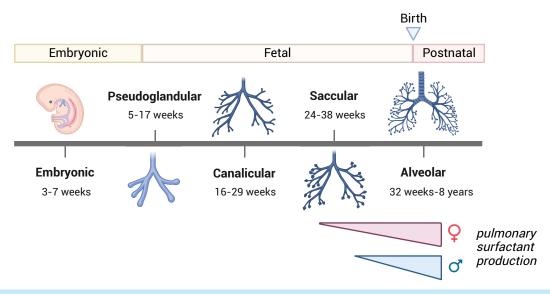
3. SEX DIFFERENCES IN LUNG DISEASE PREVALENCE AND OUTCOMES

Over the past several decades, multiple studies have indicated that the prevalence, progression, and outcomes of diseases in women and men are influenced by both biological sex and gender (4). Disease epidemiology and clinical manifestations also vary between sexes across the lifespan (FIGURE 2). These differences are observed as early as infancy, when respiratory distress syndrome (RDS) and bronchopulmonary dysplasia (BPD) rates are higher for male than female newborns (10, 30, 31), and continue throughout childhood when asthma and chronic cough are more common in boys than girls (5). Certain respiratory infections like respiratory syncytial virus (RSV) are also more predominant in boys than girls (32, 33). Interestingly, after puberty, women have higher rates of asthma prevalence, severity, exacerbations, hospitalizations, and mortality compared to men (28, 34–36). Adult women are also more disproportionally affected by conditions such as pulmonary hypertension (PH) (37, 38), chronic obstructive pulmonary disease (COPD) (9, 39, 40), bronchiectasis (41–43), and lung cancer. Men present with

FIGURE 1. The sex and gender variables and their influence on lung disease susceptibility. The sex variable (*left*) is biological and includes chromosomal and hormonal factors that can influence the susceptibility to lung diseases through physiological responses. The gender variable (*right*) is a social construct that can influence environmental exposures through established roles and normative habits, affecting lung disease risk. Both sex and gender can intersect to influence lung disease presentation, responses to environmental challenges, and disease treatment. Figure created with a licensed version of BioRender.com.

FIGURE 2. Sex differences in lung disease incidence across the life span. While some diseases display marked sex differences across all ages, others (asthma and obstructive sleep apnea) show inverse patterns before and after puberty. Hormonal, genetic, and environmental factors have been implicated in the sex disparities observed for respiratory conditions. BPD, bronchopulmonary dysplasia; COPD, chronic obstructive pulmonary disease; IPF, idiopathic pulmonary fibrosis; LAM, lymphangioleiomyomatosis; OSA, obstructive sleep apnea; PH, pulmonary hypertension; RDS, respiratory distress syndrome; RSV, respiratory syncytial virus Figure created with a licensed version of BioRender.com.

higher rates of idiopathic pulmonary fibrosis (IPF) (44, 45) and obstructive sleep apnea (OSA) (46). Sleep disorders are also more common in women, particularly during pregnancy, and conditions like lymphangioleiomyomatosis (LAM) are almost exclusive to women (47– 50). On the other hand, lung infections resulting in pneumonia and COVID-19 display higher severity in men in the acute phase, while their chronic counterparts and long-term consequences (e.g., long-COVID) affect more women (51, 52). Thus, considering sex and gender in research helps us comprehend disease mechanisms and identify ways to enhance personalized medicine and lung health outcomes. To understand the mechanisms underlying sex differences in lung disease, a variety of animal models have been developed to recapitulate specific disease phenotypes. Most of these studies have been conducted in mice, taking advantage of genetically modified models. The sections below summarize known sex-specific features of lung conditions disproportionally affecting males and females throughout life, as well as the mechanisms identified using animal models.


3.1. Respiratory Distress Syndrome

Previously known as hyaline membrane disease, RDS is a condition that primarily affects prematurely born infants due to their underdeveloped lungs and insufficient surfactant expression. This results in widespread lung collapse and reduced lung function, leading to complications such as pneumothorax. Before the use of antenatal corticosteroids and postnatal surfactant replacement therapy, this condition significantly increased neonatal mortality, with a higher risk observed in male neonates (30, 53). A meta-

analysis of data from over 500,000 preterm newborns reported that RDS was almost twice as prevalent in newborn males as in females (54). This increased risk persists even after controlling for factors such as gestational age (GA), birth weight, and other clinical parameters (55).

It is known that RDS partially results from surfactant deficiency and dysfunction in the immature lung. Produced by alveolar type 2 (AT2) cells, pulmonary surfactant forms a lipid layer over the inner surface of the alveoli, reducing surface tension and preventing alveolar collapse at the end of expiration (56). As a result, the more developed the fetal lung, the lower the risk of developing RDS after birth. Female fetal lungs tend to be more advanced structurally than male lungs at earlier GA, a process mediated by sex hormones (11, 57, 58). Pulmonary surfactant is produced earlier in females than in males during gestation, stimulated by female sex hormones and inhibited by male sex hormones (31, 59, 60) (FIGURE 3).

Both maternal and fetal sex steroids play essential roles in lung development and, thus, RDS susceptibility (**FIGURE 4**). Production of testosterone and anti-Müllerian hormone (AMH) by fetal testes contributes to delayed surfactant production in the male lung. The fetal androgens inhibit AT2 development and surfactant production in male embryos (61, 62). In addition, androgen receptors (ARs) are highly concentrated on epithelial cells that control bronchial development (56). These cells also contain high levels of 5-alpha reductase, suggesting that dihydrotestosterone and other androgens influence early bronchiole formation (63). Additionally, androgens inhibit surfactant production by suppressing epidermal growth factor (EGF) and transforming growth factor- β 1 (TGF β 1) in AT2 cells (64). Research in rabbits

FIGURE 3. Sex differences in lung development. The development of the human lung is divided into 5 main phases: the embryonic phase (3–7 weeks of gestation), the pseudo-glandular phase (5–17 weeks of gestation), the canalicular phase (16–29 weeks of gestation), the saccular phase (24–38 weeks of gestation), and the alveolar phase (32 weeks of gestation through adolescence). The expression and secretion of pulmonary surfactant begin about 2 weeks earlier in female lungs than in male lungs (26–28 weeks of gestation). Figure created with a licensed version of BioRender.com.

has demonstrated that female fetuses exposed to androgens show delayed lung development, while blocking androgens in male fetuses eliminates the typical sex-based differences in surfactant production (65). Conversely, placental estradiol induces female fetuses to produce surfactant much earlier and display enhanced alveolar maturation due to higher expression, signaling, and activity of estrogen receptors (66, 67). Estrogen also influences lung development through platelet-derived growth factor (PDGF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling to affect alveolar structure, lung elasticity, and surfactant production (66–68). Studies have shown that removing estrogen receptor- β in female

mice results in increased alveolar size and decreased alveolar surface area, creating characteristics that resemble male lungs (60). These structural differences significantly impact RDS risk in premature infants by affecting both surfactant levels and the lung's ability to facilitate gas exchange.

Pregnant women at risk of preterm birth are administered antenatal steroids to accelerate lung maturity in the preterm fetus, reducing the likelihood of RDS and the need for respiratory support after birth. This treatment also has varying effects based on fetal sex. Following antenatal betamethasone therapy, female neonates derive more benefit compared to similarly treated males. However, some studies have shown that

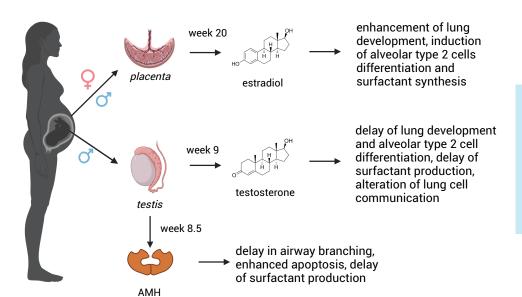


FIGURE 4. Hormonal secretion and regulatory effects during lung development. Male fetuses produce anti-Müllerian hormone (AMH) and testosterone at 8.5 and 9 weeks of gestation, respectively, which delay lung development. In week 20, the placenta produces estradiol, which affects the expression of surfactant in both male and female fetuses. Figure created with a licensed version of BioRender.com.

antenatal steroids may not provide a protective effect in preterm male neonates weighing less than 1,000 g at birth (69). Another study reported that betamethasone treatment prevents RDS with higher potency in preterm females (53). Furthermore, preterm females exhibit better preservation of microvascular blood flow following glucocorticoid exposure (70, 71), although a subsequent systematic review and meta-analysis found no sex-specific differences (10). The administration of antenatal corticosteroids not only enhances the infant's response to subsequent surfactant treatment but also makes this effect more prominent in female infants than male infants of the same age (72). Treatment with surfactant results in better responses in females than males, with males requiring higher doses to acquire similar outcomes and reduce mortality (73). Together, these differences in disease presentation and response to treatment have been postulated to influence the development of other complications of prematurity, including pulmonary, neurological, ocular, and gastrointestinal (74, 75). The relationship between sex hormones and fetal lung development helps explain why male infants face higher rates of RDS than females, even when antenatal corticosteroids are administered. While corticosteroids enhance the airway sodium-potassium pump activity to clear fetal lung fluid, male neonates have fewer alveolar sodium transport channels compared to females (76). This reduced sodium transport capacity can lead to fluid retention in the lungs, compromising gas exchange and increasing RDS risk (77).

For several decades, excessive oxidative stress combined with weak antioxidant defenses has been postulated as an underlying mechanism of diseases of prematurity (78, 79). This theory has gained significant support, with oxidative stress now recognized as a central factor in premature infant complications. Importantly, research has revealed that male and female preterm infants differ in their ability to defend against oxidative stress, with females showing higher antioxidant enzyme activity than males (80). In this context, the glutathione system plays a particularly crucial role. Multiple studies have identified significant sex differences in glutathione levels; the enzymatic activity of glutathione peroxidase, reductase, and S-transferase; and cysteine metabolism in the placenta, umbilical cord, and immune cells (81-83). Based on these findings, it has been suggested that new treatments to protect against oxidative stress in premature infants should both address the glutathione system and account for the infant's sex.

While research in the past few decades has revealed associations of genetic, hormonal, and cellular factors (FIGURE 5), the key biological mechanism driving the observed sex differences in RDS appears to be the effect of sex hormones on fetal lung development. Estrogen promotes, and androgen delays, lung maturation and

surfactant production, giving female fetuses an advantage during premature birth.

3.2. Bronchopulmonary Dysplasia

Also found in prematurely born infants, BPD is a condition characterized by an arrest in alveolarization and abnormal development of the pulmonary blood vessels, currently diagnosed based on the need for oxygen or respiratory support at 36 weeks of postmenstrual age (84, 85). The risk of developing BPD is higher in extremely premature boys, with male sex considered an independent predictor for BPD and its severity (86–88). Children with BPD may also experience long-term complications such as the need for tracheostomy and mechanical ventilation, pulmonary hypertension of the newborn, and poor neurodevelopmental outcomes (85, 89–93). Long-term lung function in premature boys with BPD is also worse than in girls, leading to the earlier onset of chronic adult diseases (94–99).

Studies have suggested that the lungs of preterm females may adapt to the postnatal environment more successfully than those of males, since the developing female fetal lung may be more advanced in lung maturation. In this regard, a prospective cohort study identified male sex and intrauterine growth restriction as essential risk factors for persistent respiratory morbidity in extremely premature newborns (100, 101). Studies have also shown that males experience impaired lung repair and recovery mechanisms despite exposure to similar perinatal insults and treatments as females (102, 103). Still, more research is needed before a sex-specific therapy can be claimed, as several other factors have been shown to influence therapeutic responses (104–107).

Clinical studies have attempted to identify the mechanisms underlying sex disparities in BPD (108, 109). Differences in lung development and response to hyperoxia have been postulated as the main contributors, with genes involved in angiogenesis, inflammation, and epithelial and mesenchymal transition (EMT) displaying sex-specific expression (FIGURE 6). A recent cohort study showed that while in female neonates BPD was associated with inflammatory responses mediated by CCL2 and galectin-1, in males it was linked to decreased expression of mesenchymal cell (MSC) genes that are crucial for distal lung development (110). These included platelet-derived growth factor receptor- α (PDGFR α), fibroblast growth factor 7 (FGF7), WNT2, SPRY1, matrix metalloproteinase 3 (MMP3), and forkhead box F2 (FOXF2) (110).

Mouse models of neonatal lung disease, typically involving prenatal exposure to hyperoxia, have also revealed sex differences. Neonatal male mice show greater arrest in alveolarization and vascularization, as

Respiratory distress syndrome

Female sex factors

Male sex factors

- less common in females
- influenced by surfactant protein genetics
- earlier surfactant production (24-25w GA)
- · earlier differentiation of AT2 cells
- higher AT2 Na+/K+ pump activity
- higher expression of estrogen receptors
- estrogen induction of lung cell proliferation
- estrogen increases PDGF and GM-CSF expression and signalling to enhance AT2 function
- higher antioxidant enzyme activity and glutathione levels
- better response to exogenous surfactant treatment

- · 2X more prevalent in males
- influenced by prematurity and surfactant protein genetics
- delayed surfactant production (26-27w GA)
- · slower differentiation of AT2 cells
- lower AT2 Na+/K+ pump activity
- higher expression of androgen receptors and 5-alpha reductase
- androgens inhibit AT2 development and proliferation
- androgens suppress TGFb and EGF expression, limiting surfactant production
- lower antioxidant levels and enzyme activity
- require higher doses of exogenous surfactant

FIGURE 5. Sex-specific factors and mechanisms associated with respiratory distress syndrome in male and female neonates. Sex disparities in respiratory distress syndrome incidence and presentation result from a combination of developmental, hormonal, genetic, and physiological factors. AT2, alveolar epithelial type 2 cells; EGF, epidermal growth factor; GA, gestational age; GM-CSF, granulocyte-macrophage colony-stimulating factor; PDGF, platelet-derived growth factor; TGFb, transforming growth factor β1. Figure created with a licensed version of BioRender.com.

well as greater alveolar simplification than female mice (108, 111-113). Mice also displayed sex-specific lung transcriptomic profiles, with upregulated EMT transition genes in females, but downregulation in males, and increased expression of lung repair and angiogenesis genes [including Vegf, Vegf receptor 2 (VegfR2), and prolyl hydroxylase domain 2 (Phd2)] in females (114). Grimm et al. (115) also demonstrated that genes in the female sex chromosomes could be protective against neonatal lung injury. A study investigating gene expression in alveolar macrophages (AMs) from neonatal mice exposed to hyperoxia also revealed high expression of sex-chromosome-specific transcripts in male mice that were associated with inflammation, as well as pathways related to glucose and carbohydrate metabolism (113). On the other hand, female AMs showed higher expression of the female-specific transcript Xist, which attenuated the acute inflammatory response to hyperoxia, and elevated interferon signaling and pathways related to DNA damage (113).

Besides changes in inflammatory, MSC, developmental, and metabolic gene expression, researchers have established associations of intracellular and secreted microRNAs (miRNAs) with BPD (116–120). MiRNAs play

important roles in posttranscriptional gene expression regulation and could mediate sex-specific phenotypes (121, 122). MiRNAs modulate oxidative stress, proliferation, apoptosis, senescence, inflammatory responses, and angiogenesis, which play pivotal roles in the development of BPD. Recently, Zhang et al. (123) reported that while male and female mice exposed to hyperoxia expressed similar levels of lung miR-30a at postnatal day 7 (PND 7; acute phase), in the recovery phase (PND 21), females expressed significantly higher levels of miR-30a in lung tissue than males. Moreover, female neonatal human pulmonary microvascular endothelial cells had greater expression of miR-30a in response to hyperoxia exposure, as well as increased sprouting. The authors suggested that miR-30a mediates sex-specific angiogenesis and BPD outcomes via regulation of the delta-like ligand 4 (DII4) gene, with increased miR-30a inhibiting DII4 expression and stimulating angiogenesis in females, and the opposite effect in males (123). In a follow-up study using miR-30 knockout mice, the same group demonstrated that the sex-specific phenotypic effect of hyperoxia exposure was abrogated and that miR-30 mediated sex-specific transcriptomic responses in the bronchial epithelium (124).

Bronchopulmonary Dysplasia

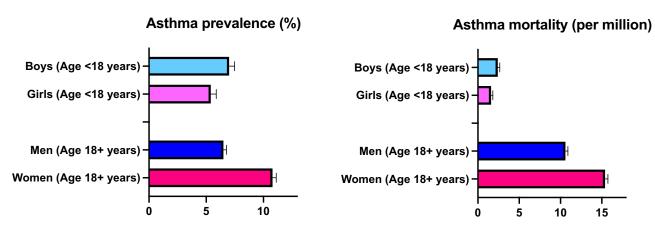
Risk factors

- male sex
- · mechanical ventilation
- prematurity
- · intrauterine growth restriction

Sex specific mechanisms

- · delayed lung development
- hyperoxia-induced arrest in alveolarization and vascularization
- decreased expression of MSC genes (PDGFRa, FGF7, WNT2, SPRY1, MMP3, FOXF2)
- sex chromosomes affect alveolar macrophage inflammation and metabolic pathways
- reduced miR-30a and increased Dll4 inhibits angiogenesis and repair

- inflammatory response mediated by CCL2 and galectin 1
- X chromosome complement protective of hyperoxia-induced injury
- alveolar macrophages expression of sex chromosome genes that attenuate inflammation
- increased interferon and angiogenesis signaling genes (Vegf, VegfR2, Phd2)
- higher miR-30a induces angiogenesis via Dll4


FIGURE 6. Male- and female-specific mechanisms of bronchopulmonary dysplasia in the infant lung. Risk factors associated with bronchopulmonary dysplasia (BPD) and a summary of main genetic, cellular, and molecular mechanisms associated with BPD in clinical and preclinical models of BPD including the sex variable. DII4, deltalike canonical notch ligand 4; FGF7, fibroblast growth factor 7; FOXF2, forkhead box F2; MMP3, matrix metalloproteinase 3; MSC, mesenchymal cells; PDGFR α , platelet-derived growth factor receptor- α ; Phd2, prolyl hydroxylase domain 2; VegfR2, vascular endothelial factor receptor 2.

Sex differences have also been reported for surfactant protein gene expression and associated gene variants, suggesting an interaction of genetic and hormonal factors in the development of BPD (125–127). For example, gene variants of the surfactant protein A genes (SFTPA1 and SFTPA2) differ in their expression in males and females and their ability to regulate lung function mechanics and survival in response to infection challenge (128, 129). Data from experimental models indicate that surfactant protein genetics interact with sex to influence immune function and response to exogenous surfactant treatment (130, 131). A recent study in an animal model of perinatal hyperoxia using surfactant protein A (SP-A) knockout mice revealed that female SP-A-deficient mice responded more negatively to oxidative stress challenge than males, although sex-specific mechanisms were not investigated (132). On the other hand, the increase in surfactant protein D (SP-D) levels after birth has been postulated to inversely associate with BPD (133). Interestingly, there is a drop in SP-D serum levels in neonate males, as opposed to an increase in females, from PND 3 to 7, although the association with BPD outcomes remains unclear (134). Overall, the impact of sex on genetic susceptibility to BPD remains an area needing further exploration, as existing studies have not consistently investigated or reported sex-based differences.

3.3. Asthma

Asthma is a prevalent chronic disease characterized by airway inflammation, clinically manifested by dyspnea, wheezing, cough, and chest tightness (15, 135, 136). As a heterogeneous disease, asthma is characterized by various phenotypes, inflammatory patterns, and differing responses to available treatments across the life span. For example, type 2 high (T2-high) asthma is marked by a strong Th2-driven inflammatory response, involving cytokines such as IL-4, IL-5, and IL-13, as well as eosinophilia and elevated IgE levels. T2-high asthma is more responsive to corticosteroids and is estimated to affect 50–70% of asthma patients (137, 138). In contrast, T2-low asthma exhibits less T2 inflammation, normal eosinophil counts, and low or absent IgE (139). T2-low asthma is less atopic and less responsive to corticosteroids (140). In adults, T2low asthma shows a female predominance, particularly in obese patients (139, 141–145). On the other hand, males tend to present asthma phenotypes associated with cigarette smoking and environmental factors, as well as exercise-induced bronchoconstriction (146, 147). Extensive reviews of the literature including cross-sectional, longitudinal, observational, and randomized control trials have supported the notion that more severe asthma phenotypes are more prevalent in adult females, resulting in higher healthcare costs (12, 16). However, there are conflicting data in the literature, with some studies indicating a more predominant Th2 phenotype in females (145, 148-150) and others indicating the opposite (151, 152).

There are significant differences in asthma incidence, prevalence, and severity, including response to exercise, depending on the sex of the patient (4, 136, 146). Before puberty, asthma is more prevalent and severe in young boys compared to girls. This leads to higher rates of asthma-related emergency department visits and hospitalizations among prepubescent boys than girls of the same age (153–155). However, after puberty, the prevalence, severity, and mortality of asthma are higher in women compared to men (16) (FIGURE 7). It has been suggested that the bimodal distribution of asthma and sex differences may be due to changes in circulating sex hormone levels at puberty (i.e., adrenarche in boys and menarche in girls) as well as declining levels with

FIGURE 7. Sex differences in asthma prevalence and mortality in children and adults by sex. Data (mean and standard error) are from the 2022 database of the Centers for Disease Control and Prevention.

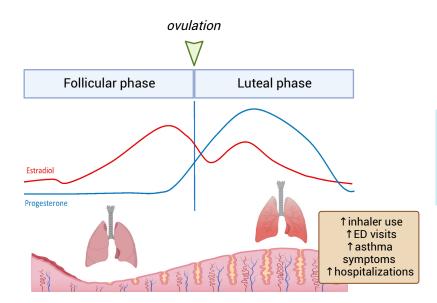
aging in men and with menopause in women (16, 156). Reports indicate that androgens may ameliorate, and estrogens may amplify, allergic airway inflammation, potentially accounting for some of the differences in asthma phenotypes and severity among men and women (150, 157–166).

The sex disparity in asthma during childhood has been noted in multiple cohort studies (5, 145). While the underlying mechanisms are still unclear, this disparity is attributed to genetic factors, anatomical differences, environmental exposures, and the microbiome (167-170). Regarding genetic factors, a study by Loisel et al. (170) identified notable genetic differences in asthma risk based on sex. Two single-nucleotide polymorphisms (SNPs) in the interferon gamma gene, rs2069727 and rs2430561, showed significant interactions with sex in determining asthma risk, despite having no direct main effects on asthma. Interestingly, boys who were heterozygous for these SNP variants had the highest asthma risk, while girls who were heterozygous had the lowest risk (170). Similarly, a study involving the EVE Asthma Genetics Consortium identified six sex-specific asthma risk alleles by conducting separate genome-wide association studies (GWAS) for males and females (171). Of these, 2 SNPs were male specific (rs2549003, rs17642749), while four SNPs were female specific (rs1012307, rs4673659, rs2675724, and rs9895098). While the female SNPs were mostly in intronic regions and the 3'-untranslated region (3'-UTR), the male SNPs were in genomic regions. Notably, all SNPs were ancestry specific, with the most significant sex-specific associations found in male European Americans at the interferon regulatory factor 1 (IRF1) locus on 5q31.1 (rs2549003) and a Latino female-specific association in the 3'-UTR of the RAP1GAP2 gene, which encodes a GTPase-activating protein regulating dense granule secretion in platelets (171). More recently, Espuela-Ortiz et al. (172) reported 4 independent loci that interacted with sex in a GWAS analysis. The 17q12-21 locus was

significantly associated with asthma risk in females but not in males, while other genetic variants were linked to asthma only in males (172). Enrichment and pathway analyses revealed an overrepresentation of processes related to the immune system and highlighted differences between sexes.

Multiple genomic studies have attempted to identify genetic and epigenetic associations with asthma, reporting over 3,000 genetic variants in more than 140 loci (173). However, only a fraction of these studies disaggregated data between males and females. A recent analysis by Zein et al. (174) of over 500,000 non-Hispanic white participants of the United Kingdom (UK) biobank revealed sex-specific gene associations with asthma, with 8 genes displaying sex differences (HLA-DQA1, HLA-DQB1, IL1RL1, FLG-AS1, BTNL2, IL18R1, HLA-DPA1, and IRF4). These genes were mostly associated with Th1 and Th2 activation and antigen presentation pathways, as well as glucocorticoid receptor signaling, and IL-4 signaling (174).

Other studies focusing on gene expression levels in various cells and tissues revealed sex-specific pathways in asthma. This is relevant since a recent analysis of the genotype-tissue expression (GTEx) database indicated that over 6,500 protein-coding genes showed significant sex-specific expression patterns across multiple tissues (175). The most comprehensive report to date was conducted by Gautam et al. (176), who analyzed more than 2.8 million transcripts covering 20,000 genes leveraged from five different tissues and cell types (epithelial, blood, induced sputum, T cells, and lymphoblastoids) in 711 males and 689 females. Using tissue-specific metaanalysis, the authors identified 439 male- and 297 female-specific differentially expressed genes (DEGs) in all cell types, with 32 genes in common. By linking DEGs to GWAS data, they identified four male-specific genes (FBXL7, ITPR3, and RAD51B from epithelial tissue and ALOX15 from blood) and one female-specific gene (HLA-


DQA1 from epithelial tissue) that were dysregulated during asthma (176). In epithelial cells, the main male-specific pathway associated with DEGs was hypoxia-inducible factor-1 (HIF-1) signaling, whereas in females it was IL-17 signaling. The cytokine-cytokine receptor pathway was shared between sexes in epithelial cells, but no shared pathways were identified in other tissues. Interestingly, no sex-specific pathways were identified in sputum (176).

Environmental factors like exposure to allergens, air pollution, and secondhand smoke can exacerbate asthma symptoms differently in boys and girls (177). Boys tend to be more affected by these factors early in life; however, as girls reach puberty, their increased vulnerability may be linked to hormonal changes. Studies addressing associations of parental asthma, prenatal environmental tobacco smoke, and prematurity (particularly very preterm birth) have determined that all are well-established risk factors for childhood asthma (178). However, the influence of sex on these factors has not been fully studied. It is known that children born prematurely or with lung injuries at birth are at a higher risk of developing asthma. This factor is particularly relevant for boys, who have relatively smaller airway diameters compared to lung volumes than girls and who are more prone to develop neonatal lung disease with premature birth (179, 180). Preterm infants are also more likely to develop severe viral infections and have altered microbiomes, leading to higher asthma rates (181).

It has also been reported that asthma severity, airway inflammation, and lung function can vary significantly over the menstrual cycle in adult women (**FIGURE 8**). Premenstrual variation of asthma symptoms has been reported in 20-40% of females with asthma, manifesting as lower forced expiratory volume in 1 s (FEV₁) and more respiratory symptoms before menses (182–184). This translates clinically into increased airway hyperresponsiveness and a higher rate of urgent healthcare utilization

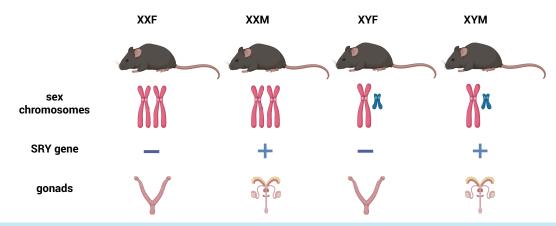
(185–188). In some women, the PC20 (i.e., the provocative concentration of bronchoconstrictor causing a 20% fall in FEV₁) has been shown to decline during the luteal phase (182, 184). In others, significant airway inflammation manifested by higher fractional exhaled nitric oxide (FeNO) and sputum eosinophils has been reported in the luteal phase and midcycle (184, 189, 190). These changes in lung function over the menstrual cycle have been attributed to the effect of sex hormones on the cyclical regulation of β 2-adrenoceptors and angiogenesis in the lungs, as well as on immune cell function and inflammation (189, 191). However, to date, evidence-based therapy for premenstrual asthma is still lacking.

During pregnancy, the respiratory system undergoes significant changes, including lung and chest wall mechanics, ventilatory patterns, and gas exchange (54, 192). While peak flow rates remain relatively stable in nonasthmatic pregnant women, lung volumes are impacted by diaphragmatic elevation and thorax configuration changes. In addition, about a third of women with asthma experience a decrease in asthma symptoms when getting pregnant (193). Interestingly, another third of pregnant women display similar symptoms, and the remaining third have increased symptoms. Studies have also found that women with more severe asthma are more likely to experience an increase in symptoms during pregnancy compared to those with milder forms of asthma (194). However, this increase is not sustained 3 months after childbirth, indicating that changes in sex hormones during pregnancy can impact asthma symptoms and lung function (40, 193, 195). The specific mechanisms behind these changes have yet to be fully understood, but both mechanical effects of the fetus on the airways and hormonal influences have been suggested. Maternal asthma can lead to significant health issues for the newborn, including higher rates of prematurity and intrauterine

FIGURE 8. Menstrual cycle and asthma. Fluctuations in circulating ovarian hormones (estrogen and progesterone) during phases of the menstrual cycle are associated with increased asthma symptoms in women. ED, emergency department. Figure created with a licensed version of BioRender.com.

growth retardation (196). Interestingly, sex differences in fetal vulnerability have been observed, with female newborns of mothers with asthma showing lower birth weights compared to males (145).

A correlation between obesity and the likelihood of asthma has also been noted with sex differences. However, data from studies addressing these associations are conflicting. For example, two extensive crosssectional studies from China and the Netherlands, as well as two longitudinal cohorts from the United Kingdom and Taiwan, revealed that childhood asthma is linked to obesity in young girls but not in young boys (197–199). The UK study monitored children longitudinally until the age of 8 and discovered that the risk of asthma was higher in girls with a higher body mass index (BMI) but not in boys (200). The Taiwan study followed participants prospectively for 12 months and found that asthma incidence was higher among obese adolescent girls but not boys (201). This is consistent with findings from Castro-Rodríguez et al. (202), who reported that girls, but not boys, who became overweight or obese between ages 6 and 11 were more likely to develop new asthma at age 11. One cross-sectional study of children aged 5-18 found that asthma was associated with higher BMI and higher serum leptin levels, which were higher in girls than in boys. The authors hypothesized that leptin, which is crucial in regulating body weight, stimulates Th1 immune pathways and proinflammatory cytokine secretion in a sex-specific manner (203). On the other hand, a meta-analysis of six prospective studies revealed that overweight and obese children were at a higher risk for asthma, and that this effect was larger for boys than girls (204). Similarly, a study in children with poorly controlled asthma revealed that obesity was associated with reduced lung function in males but improved lung function in females (205).


Interestingly, the negative impact of obesity on asthma becomes less significant with age. In fact, lung function is mainly reduced between the ages of 6 and 11 in both boys and girls. However, between the ages of 12 and 44, females (but not males) show more significant lung function impairment related to obesity (206–209). Although most reports, but not all, suggest a sex difference in the obese-asthma phenotype, it remains unclear whether these differences are specifically related to sex hormones (210, 211). In this regard, two major research initiatives, the European Network For Understanding Mechanisms of Severe Asthma (ENFUMOSA) and the Severe Asthma Research Program (SARP), revealed that adult women were over four times more likely than men to have severe asthma compared to nonsevere asthma (142, 212, 213) and that women with severe asthma had significantly higher BMI. Meanwhile, BMI did not differ between men with severe versus nonsevere asthma. Overall, while most studies suggest an interaction between gender and

obesity in asthma, with obesity-related asthma typically emerging later in life, presenting with more severe symptoms, and occurring predominantly in women (214), the underlying mechanisms remain unclear.

More recently, the airway and gut microbiomes have been implicated in sex-specific asthma phenotype pathogenesis. Interestingly, both microbiomes differ between men and women, and a role of the lung-gut axis has been proposed as a mediator of lung disease pathogenesis (215–219). A study analyzing induced sputum samples found that *Streptococcus salivarius* was significantly more abundant in women than in men with asthma, and that lower levels of this bacterium were associated with a higher likelihood of asthma. Additionally, increased levels of *Lactobacillus* species were observed in patients with asthma compared to healthy controls, and *Haemophilus* species were associated with asthma in men and not in women (220).

Animal models of asthma, including those employing ovalbumin (OVA) or house dust mite (HDM) challenges, have consistently shown variability in innate and adaptive immune responses in males and females (221). Compared to male mice, females tend to exhibit increased serum IgE and greater production of Th2 cytokines (e.g., IL-4, IL-5, IL-13) (221, 222). In HDM-challenged models, female BALB/c mice also show a Th17-biased response, whereas male mice demonstrate higher Th2 responses (222). This highlights the complexity of immune responses based on sex and strain. While these animal models have replicated lung inflammatory patterns observed in humans, inconsistent data have been reported for lung function parameters (reviewed in Refs. 223 and 156). These parameters not only show high variability across models but also dual roles of sex hormones in attenuating or exacerbating airway hyperresponsiveness (224).

Gonadectomy studies in mice have also provided valuable insights into the role of sex hormones in lung inflammation and asthma. Collectively, these studies have replicated hormone-related phenotypes observed in humans. For example, gonadectomized male mice exhibited airway eosinophilia and heightened Th2 inflammation when challenged with HDM (225) and increased group 2 innate lymphoid cells (ILC2) cells when challenged with Alternaria alternata extract (226). This suggests that testosterone may play a protective role by attenuating Th2 responses and eosinophilic inflammation. In this regard, the androgen receptor (AR) has been identified as a key mediator through which testosterone exerts its effects in the lung (159, 227-230). On the other hand, studies on gonadectomized females showed decreased levels of IL-5, IL-13, and total serum IgE, as well as a reduction in eosinophils and airway hyperresponsiveness in response to allergen challenge (231–233), indicating that ovarian hormones are crucial in allergic airway inflammation.

FIGURE 9. The 4 core genotypes (FCG) mouse model. The FCG model is created by deleting the testis-determining gene (SRY) from the Y chromosome and inserting it onto an autosome (nonsex chromosome). As a result, the type of gonad (testes or ovaries) is no longer strictly determined by the sex chromosomes. This genetic manipulation produces 4 possible combinations: XX mice with ovaries (XXF), XX mice with testes (XXM), XY mice with ovaries (XYF), and XY mice with testes (XYM). This model enables researchers to determine whether observed sex differences in traits are due to sex chromosome complement, gonadal hormones, or their interaction. Figure created with a licensed version of BioRender.com.

A useful tool to discern the contributions of sex hormones and sex chromosomes is the four core genotypes (FCG) mouse model, a genetically engineered system designed to separate the effects of sex chromosomes (XX versus XY) from the effects of gonadal sex (testes versus ovaries) on physiology and disease (FIGURE 9) (234). In this model, the Sry gene of the Y chromosome, which triggers testis development, has been moved to an autosome (chromosome 3), generating four possible combinations: XX mice with ovaries (XXF), XX mice with testes (XXM), XY mice with ovaries (XYF), and XY mice with testes (XYM). By comparing mice with the same type of gonad but different sex chromosomes (e.g., XXM vs. XYM), it is possible to identify effects due to sex chromosome complement. In contrast, by comparing mice with the same sex chromosomes but different gonads (e.g., XXF vs. XXM), the effects due to gonadal hormones can be identified. Recent studies using the FCG model in the context of HDM challenge and asthma have identified the predominant effect of female gonadal hormones on lung inflammation, with notable differences across genotypes and unique pathways affected by sex hormones and sex chromosomes (235-237).

Overall, from childhood to adulthood, biological sex is a key factor in asthma phenotypes. Multiple mechanisms involving gene expression regulation and actions of gonadal hormones have been postulated, particularly in inflammatory and immune pathways (**FIGURE 10**). Understanding the interplay between sex hormones and asthma can lead to future personalized therapeutic strategies that consider these hormonal influences.

3.4. Chronic Obstructive Pulmonary Disease

Chronic obstructive pulmonary disease has traditionally been thought of as a disease affecting older men (238).

However, over the past two decades, it has become increasingly clear that a significant number of women are also affected by the disease (239–243). The prevalence of COPD and hospitalizations related to it has risen among women, partly due to increased rates of tobacco use across the globe (244-248). Some data even suggest that women may be more susceptible to the harmful effects of smoking (249-251), although recent data suggest that nonsmoking women are also more likely to develop COPD (252, 253). It is also recognized that the clinical presentation and progression of the disease differ between sexes (239). Evidence suggests that women develop the disease earlier in life, have fewer pack-years of smoking at the time of diagnosis, and experience more frequent respiratory exacerbations (254, 255). There is also emerging evidence of sex-related differences in the underlying pathophysiology of the disease, including variations in cytokines, proteomics, and metabolomics, which could contribute to differences in how the disease presents clinically. Clinical data also revealed that women were significantly more affected by COPD despite minimal tobacco smoke exposure (256-259). This sex bias has resulted in a decrease in the mortality rate of men with COPD in the United States, while there has been no change among females (260, 261).

COPD presents a critical public health challenge, as recent research suggests that women have heightened biological susceptibility to nicotine addiction and environmental risk factors compared to men (260, 262). The impact of COPD on women also varies significantly between developed and developing nations. In developing countries, women face a dual burden: not only tobacco use but also extensive exposure to indoor air pollution from cooking with biomass fuels (263, 264). Among female smokers, mortality risk escalates with

sex-specific risk factors

•	airway size, lung
	development, BMI,
	microbiome

anatomy/ physiology

• lung size, BMI, microbiome

environmental exposures

 air pollution, smoking, allergen exposure, exercise

SNPs: rs2069727, rs2430561; Locus: 17q12-21

genetic factors HIF-1signaling (males), IL-17 signaling (females).

switch in incidence at puberty onset

hormonal factors

- sex hormone effects stronger than sex chromosome effects
- estrogen-induced inflammation (females)
- androgens and AR reduce inflammation (males)

FIGURE 10. Sex-specific factors and mechanisms of childhood and adult asthma. Genetic, immune, hormonal, environmental, and physiological factors affect asthma susceptibility across the life span. The main mechanisms differentially affected by sex hormones involve lung immune responses to allergen challenges and regulation of signaling pathways. AR, androgen receptor; BMI, body mass index; HIF-1, hypoxia-inducible factor-1; SNPs, single-nucleotide polymorphisms.

both cigarette consumption and earlier onset of smoking (265, 266).

Anatomical differences between males and females contribute to the disparities observed in COPD. Females typically have smaller airways and lung volumes, which can lead to greater respiratory constraints during exertion (254). This difference necessitates a higher ventilatory effort for females compared to males, contributing to increased dyspnea. The inflammatory response to cigarette smoke also appears to differ between sexes, potentially due to hormonal influences (267). Females exhibit heightened inflammatory responses characterized by increased levels of cytokines such as IL-5 and IL-13, which are associated with allergic inflammation and could contribute to the severity of symptoms (268). Estrogen is believed to influence lung function and the progression of COPD, and interact with oxidative stress pathways, such as those involving NADPH oxidase 4 (NOX4) (9, 269). Conversely, testosterone may offer protective benefits against COPD. A recent study assessing lung tissue gene expression and DNA methylation from the Lung Tissue Research Consortium identified sex differences in COPD-related gene regulatory networks, along with sex-specific expression of extracellular matrix genes (including ITGA7, ITGA9, ITGA11, ITGB3, ITGB5,

and SV2B) that were associated with emphysema severity, cigarette smoke, aging, and lung function (270). Another study using the using the Canadian Longitudinal Study on Aging (CLSA) baseline comprehensive and genomic data found 28 distinct signals for a genome-wide SNP-by-sex interaction COPD outcomes, including 8 SNPs in males located in or near the MAGI1, COX18, OSTC, ELOVL5, C7orf72 FGF14, and NKAIN4 genes, and 4 SNPs in females located in or near genes CAMTA1, SATB2, PDE10A, and LINC00908 (271). The authors concluded that elucidation of functional sex-specific roles of these signatures may help improve disease endotyping in male and female patients and develop more personalized therapeutics.

Mouse models of COPD typically involve chronic cigarette smoke exposure (243). Although most animal models of COPD cannot be directly extrapolated to human phenotypes, they have revealed significant sex differences in disease progression and manifestation (254, 267). In these models, female mice tend to develop more small airway disease, airway inflammation, airflow obstruction, and airway remodeling, while male mice are more prone to emphysema (272). These differences are linked to both structural and

molecular mechanisms, including variations in airway size, extracellular matrix gene regulation, and inflammatory cell profiles between sexes. Importantly, gonadectomized females display male-like phenotypes, suggesting a role of female sex hormones in sex-specific COPD mechanisms. Continued refinement of these models will enhance their relevance and applicability to human health issues related to COPD and address sex-specific mechanisms.

3.5. Lung Cancer

Lung cancer is the second most diagnosed cancer in men and women worldwide (273). It is also the leading cause of cancer mortality for both men and women. While tobacco use has been closely associated with lung cancer in both males and females, nonsmoking women are more likely to develop lung cancer than nonsmoking men (9, 274). There is also a higher occurrence of squamous cell carcinoma in males and a higher occurrence of adenocarcinoma in females (275). Moreover, there has been a rise in the number of deaths related to lung cancer in women but not in men (276). Even with lower tobacco use rates, women smokers are also more likely to develop lung cancer than men.

Female sex hormones are believed to play a role in this phenomenon, leading to molecular aberrations resulting from the carcinogenic effects of tobacco, as well as modulating the metabolism of tobacco-containing toxins (277–281). For example, estrogen synergizes with some tobacco compounds through the induction of CYP1B1, leading to enhanced reactive oxygen species formation and carcinogenesis (282, 283). There have been numerous reports on the association between sex hormones and lung cancer (277, 284, 285). These studies have shown that estrogen can be produced by lung cancer cells and induce cell proliferation (286). In line with the idea that estrogens promote lung cancer, a noticeable increase in lung cancers was observed in males who were administered estrogens to treat heart disease, prompting the early termination of the clinical trial (287). Estrogens can also influence the effects of other carcinogenic factors, such as smoking-related genetic mutations (288). The role of estrogens in promoting cancer is further supported by the frequent expression of estrogen receptors in lung cancers and by their ability to stimulate lung cancer growth directly or indirectly via aromatase in cell culture studies (289). These findings suggest that estrogen contributes to lung cancer growth both in clinical settings and experimental models. Estrogen has also been shown to promote cell proliferation and tumor growth. Thus, anti-estrogen

treatment strategies have been implemented to decrease tumor size, growth, and cell proliferation, leading to improved patient outcomes (290, 291). For example, a study using antiestrogen for breast cancer patients revealed a reduced risk of subsequent lung cancer in older patients, suggesting that antiestrogen therapy can modify lung cancer carcinogenesis in older women (292). There have also been reports on progesterone inhibiting lung cancer growth in vivo and higher levels of testosterone being associated with higher lung cancer risk (293-295). Moreover, progesterone has also been shown to play a potential role in the development of lung cancer, as its receptors are commonly expressed in nontumor tissues compared with malignant lung tissue (296–298). Finally, testosterone has been reported to potentiate cancer-promoting effects of estrogen while suppressing overall immune responses (299–301). While a role of androgen receptors has been postulated (302), more research studies and clinical trials are needed to determine therapeutic options considering gonadal hormones in lung cancer (303, 304).

Genetic differences have also been identified between lung cancers in men and women, with women more frequently having lung cancer with driver mutations in the EGFR, ALK, or KRAS genes (305–307). A few studies have indicated that female patients with lung cancer are more likely to harbor EGFR mutations compared to their male counterparts (308-310). Women with ALKpositive lung cancers also tend to be younger than their male counterparts and are often nonsmokers (311, 312). This demographic is particularly prevalent in Asian populations, where studies have shown that ALK rearrangements account for a significant portion of mutations in lung adenocarcinoma (309, 313). Female smokers also tend to have higher levels of aromatic/ hydrophobic DNA adducts and greater expression of CYP1A1 in lung tissue compared to males (314), leading to increased metabolism of polycyclic aromatic hydrocarbons (PAHs) from cigarette smoke into carcinogenic intermediates. Despite lower exposure to tobacco carcinogens, female smokers show higher levels of PAH-DNA adducts, potentially due to estrogen's role in cell proliferation (315). Moreover, females generally metabolize nicotine faster, partly because of enhanced CYP2A6 activity linked to higher estrogen levels (316, 317). Research has also shown that the X-linked gastrin-releasing peptide receptor (GRPR), which promotes cell proliferation, is more highly expressed in female nonsmokers than in males. Additionally, female smokers exhibit higher GRPR expression at lower levels of tobacco exposure, suggesting that two copies of the GRPR gene might increase susceptibility to lung cancer in women (318, 319). The methylation profiles of genes in lung adenocarcinoma exhibit a female bias, involving categories linked to interferon-alpha response, $TGF\beta$, and $TNF\alpha$ signaling, as well as apoptosis (320).

The landscape of lung cancer is changing, with increasing incidence rates among younger women and notable differences in histology and outcomes compared to men. Continued research into the biological underpinnings of these sex differences is essential for developing personalized approaches to prevention, diagnosis, and treatment. Understanding the interaction of hormones and expression of sex-specific genes with environmental factors can lead to better-targeted interventions that consider the unique characteristics of male and female patients.

3.6. Obstructive Sleep Apnea

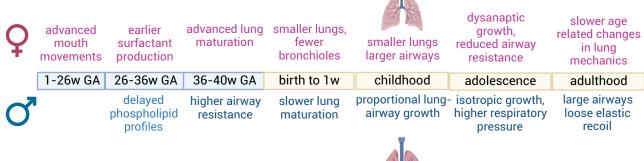
Obstructive sleep apnea is a sleep disorder characterized by repeated episodes of partial or complete blockage of the upper airway during sleep. The prevalence and severity of OSA are higher in men compared to women, with male-to-female ratios ranging from 2:1 to 3.5:1 in the general population (46). This has been related to anatomical differences leading to increased airway compliance and collapsibility in men compared to women (321). Like with other conditions described earlier, the disease incidence is similar between sexes before puberty. However, after puberty, the pathogenesis of OSA diverges, and OSA becomes more common in males than females (321). The lower risk and severity in postpubertal girls have been related to the protective effect of female sex hormones on airways and ventilatory drive. This is further demonstrated by the increased rates of OSA in women postmenopause (322), as well as reduced OSA symptoms in transgender women receiving estrogen therapy (323). One additional proposed mechanism in females involves progesterone, which is known to increase the tone of the upper airway muscles and stimulate ventilation by increasing the chemoreceptor response to hypoxia and hypercapnia (324). In addition, studies in hypogonadal men and obese men with low testosterone levels revealed that androgens may be protective for OSA (325).

4. SEX DIFFERENCES IN LUNG PHYSIOLOGY

Sex differences in the lung have been reported as early as during fetal development. Female fetuses display smaller airways and fewer bronchi than male fetuses. After birth, a higher ratio of large to small airways characterizes female neonates with higher flow rates and airway conductance than males. This has been attributed

to the surfactant action of maintaining patency of the smaller airways.

These differences continue throughout adult life, resulting in larger male lungs containing smaller airways (65). Indeed, women's airway luminal areas and length are 20–30% and 10–14% smaller than men's, respectively (326). Interestingly, the differences in airway size between sexes were first noted in 1894 by Ellis (327), where it was reported that "in nearly every dimension man's larynx is larger, the entire male larynx being about one third larger than the female."


The lungs of girls and women are generally smaller than those of boys and men of the same height. However, when measuring lung function parameters, females tend to have higher forced expiratory flow rates than males (after normalizing for differences in body size). In fact, the ratios of forced expiratory volume in 1 s (FEV₁) to forced vital capacity (FVC) are higher for girls and women. This is because when the lung develops and grows, a disproportional scaling of airway dimensions relative to lung size can occur, resulting in a mismatch between the airway lumen caliber and lung volume, a concept known as dysanapsis (from Greek: dys = unequal and anaptixy = growth) (180) (FIGURE 11). While males are more likely to have isotropic lung growth, females tend to experience higher rates of dysanapsis.

Overall, three main factors contribute to the sex differences in airway structure and function: 1) dimensional factors, addressed with the concept of dysanapsis during lung growth; 2) immune factors, associated with sex differences in lung inflammation, atopy, and infection; and 3) hormonal factors, such as influences of reproductive cycles, puberty, menopause, and pregnancy.

We elaborated on these in detail in the sections below.

4.1. Dimensional Factors: Sex Differences in Lung Development

Lung development in humans is a well-established process involving several stages (328–330). The lung begins to grow from the foregut endoderm at an early stage of gestation, progresses to establish conducting airways by birth, and continues alveolar development for up to 8 years postnatally (330). There are five major stages during development: embryonic, pseudo-glandular, canalicular, saccular, and alveolar (**FIGURE 3**). The embryonic stage initiates at 3–7 weeks of GA and is characterized by the primary right and left lung bud formation. From 5 to 17 weeks of GA, the pseudo-glandular stage occurs, where branching morphogenesis establishes the airway tree and cellular differentiation begins. Fetal breathing begins once tracheal cartilage, smooth

FIGURE 11. Sex differences in lung growth and dysanapsis. Male and female embryonic/fetal (blue) and postnatal (yellow) lung development presents sex-specific characteristics. A timeline of sex-specific features related to lung growth and respiratory mechanics is shown. GA, gestational age; w, week. Figure created with a licensed version of BioRender.com.

muscle, and blood vessels develop (331). In the following canalicular stage, ranging from 16 to 29 weeks of GA, epithelial branching and cell differentiation occur, giving rise to alveolar epithelial cells alongside a capillary network around distal epithelial airspaces. In the subsequent saccular stage, at 24–38 weeks of GA, branching morphogenesis ends, and saccules form at the ends of airways. Alveolar epithelial cells begin to differentiate into AT2 cells, which produce surfactant. The final stage is alveolarization, starting at 32 weeks of GA and continuing through adolescence, when alveoli are fully formed and their surrounding capillary network matures. As indicated in the prior sections, lung development is a process that is heavily influenced by sex hormones, including maternal and fetal steroids (FIGURES 3 AND 4). Recently, Savchuk et al. (58) identified testosterone presence in embryos as early as 6–7 weeks of gestation, with levels peaking between weeks 11 and 14. The delay in male versus female fetuses due to the actions of sex hormones (31) provides an advantage in premature birth for female newborns, leading to sex differences in lung disease susceptibility (31, 332).

Anatomical differences may also explain the observed sex-specific physiological responses in infancy and puberty. At birth, male babies have larger lungs than females, with more respiratory bronchioles (333). However, the female airways and their lung parenchyma grow more proportionately than those of males throughout infancy, childhood, and adolescence (65, 334). Because early postnatal lung development involves exponential increases in the number and size of alveoli, the female lung is smaller compared to the male lung, and the male's total number of alveoli and surface area is consistently higher throughout childhood. As a result of these growth patterns, airway resistance is lower in females, resulting in

higher forced expiratory flow rates, giving an advantage to prepubertal girls versus boys regarding airflow. While males have larger lungs and longer airways, they are at a disadvantage for expiration. Then, after puberty, adult men's and women's expiratory flow rates become comparable. Additionally, lung development is influenced by the timing of puberty. Later pubertal age is also associated with a lower risk for asthma-like symptoms in early adulthood (156, 335, 336).

4.2. Immune Factors: Sex Differences in Lung Immunity

Throughout the different life stages, males and females display distinct immunological responses to foreign and self-antigens, exhibiting differences in both innate and adaptive immunity (337, 338). Like lung diseases, sex differences in lung immunity can start as early as infancy or emerge after puberty and are often attributed to hormonal influences (339–342). Furthermore, environmental exposures and exercise can impact immune function in a sex-specific manner (146, 147, 343). Notably, these sexbased immunological distinctions may play a role in the varying occurrence of autoimmune diseases, cancers, susceptibility to infection, and responses to vaccines (344, 345). Overall, females tend to mount stronger lung immune responses with higher basal immunoglobulin levels, antibody responses, and B-cell counts than men (346). However, while the stronger immune responses in females may contribute to faster pathogen clearance, they can also increase susceptibility to chronic inflammatory and autoimmune lung diseases (347).

Numerous reports indicate sex differences in respiratory infections (348, 349). While the exact mechanisms are not fully understood, strong evidence suggests that males are more susceptible to respiratory infections and have a harder time recovering compared to females,

except for some upper respiratory tract infections (350). Variations in lung structure and function, as well as the influence of sex hormones, may explain these differences in susceptibility and response to respiratory infections (6, 351). For example, differences in lung development and maturity due to sex hormones may contribute to the higher frequency of lower respiratory tract infections in young males (261). Estrogens lead to more effective immune responses, while androgens reduce immune competence, making males more susceptible to infection (158, 340, 352, 353). It is also important to consider the influence of cyclical changes in female sex hormone concentrations, particularly during the menstrual cycle and pregnancy, on the immune response to respiratory infections (354-356). Reports have indicated that specific respiratory symptoms (wheezing, cough, and shortness of breath) were most frequent in women at the mid-luteal to midfollicular phases (357). Also, physiological changes during pregnancy can increase susceptibility to viral infections, with a higher risk of pulmonary infections for pregnant women (358). Genetic and chromosomal factors also contribute to observed differences in susceptibility to infection, as several immune-cell-related genes are located on the X chromosome (337, 359). In this regard, X-chromosome inactivation, an epigenetic mechanism ensuring the silencing of one X chromosome in female individuals, may also contribute to the observed sex disparities in lung infection (52, 360).

Respiratory infections are a significant cause of illness and death in people of all ages. Research has indicated that immunity to viruses may vary with changes in hormone concentrations due to fluctuations during the menstrual cycle, contraception use, pregnancy, and menopause (340). While males generally experience more severe lower respiratory tract infections, females seem to be more prone to upper respiratory infections (351). Sex differences in infection rates and outcomes have been postulated due to genetic, hormonal, anatomical, and immunological factors (361–364). In infancy, boys are more likely to be affected by respiratory syncytial virus (RSV) compared to girls (365), resulting in more frequent and severe cases of bronchiolitis and often associated with a higher risk of wheezing, childhood asthma, and hospitalization (366, 367). Regarding other common infections, such as influenza, studies have shown that there are sex differences in influenza severity, mortality, vaccine tolerance, responses, and outcomes (368). Interestingly, males are more susceptible to infection than females, and females have greater immune responses but experience more adverse reactions to influenza vaccines than males (344, 369).

Sex-specific immune responses to various viral pathogens have been documented in recent studies (360, 370–373). Previous outbreaks of coronaviruses such as

severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) have shown higher fatality rates in males compared to females (374-376). However, COVID-19 revealed sex differences in hospitalizations, intensive care unit admissions, and deaths, with a significant male predominance (377, 378), partially mediated by the androgen effects on the TMPRSS2 gene (379). In addition, sex differences in the immune response to SARS-CoV-2 showed higher levels of proinflammatory cytokines and chemokines in males with mild disease, while females displayed higher activation of adaptive immunity pathways (380). These differences were attributed to a combination of hormonal and chromosomal factors playing a role in the immune response to the viral infection (381). Additionally, long-term consequences of COVID-19, such as postacute sequelae of COVID (PASC), have been reported with higher rates in female than male patients (382, 383).

4.3. Hormonal Factors: Sex Steroids and Lung Disease

Sex steroids are primarily produced by three central organ systems: the gonads, the adrenal glands, and the fetoplacental unit (65). They are also metabolized in several nonendocrine peripheral tissues and organ systems (2, 384). The local production of sex steroids within specific tissues, mainly from nongonadal sources, depends on the concentration of the enzymes in cholesterol metabolism (385, 386). The first step in the synthesis of sex steroids is the conversion of cholesterol to pregnenolone via the cholesterol side-chain cleavage enzyme. After a cascade of downstream metabolic conversions, two active sex steroids are created: testosterone and estradiol. Several other estrogenic and androgenic precursors are assembled along the pathway, some of which are metabolized into active precursors by cytochrome enzymes (162). Each of these sex steroid hormones acts mainly through specific receptors to mediate sex steroid-dependent actions (233, 387-389). Importantly, all the sex steroid receptors have been detected in lung tissue.

Due to their diverse nature, the role of sex hormone signaling in lung function and disease states is still inconclusive. Multiple studies have reported proinflammatory and anti-inflammatory effects in different cell types and life stages (150, 158, 390–393). While androgens have been shown to have primarily inhibitory effects, estrogens have been linked to the protective impacts on fetal lung maturation. This suggests a definite physiological role for sex steroids in the lungs before birth. Additionally, fetal lungs undergo specific changes during the third trimester to prepare for life outside the womb, some of which can be attributed to the

effects of sex steroids (6). These changes can also impact lung health in adults (394).

As mentioned in the sections above, studies have found that respiratory allergic diseases are more prevalent in males during childhood (150, 159, 395, 396). Evidence suggests that androgens like dehydroepiandrosterone (DHEA) and its sulfate metabolite, DHEA-S, decrease with age and are associated with airway diseases (23, 397–399). However, the impact of sex steroids on the prepubertal age group is unclear and requires further study. Further research is also needed to explain the observed sex differences in the prevalence and severity of lung diseases during adolescence (400, 401). Additionally, understanding the differences in disease mechanisms as individuals mature into puberty is essential.

5. ENDOGENOUS AND EXOGENOUS SEX HORMONES AND LUNG DISEASE

As discussed in prior sections, sex hormones, particularly estrogens and androgens, have significant and complex effects on lung physiology and various lung diseases. Both endogenous fluctuations in circulating hormone levels due to physiological events (e.g., puberty, reproductive cycles, menopause, pregnancy) or changes due to exogenous hormone administration (e.g., oral contraceptive use, hormone replacement therapy, hormonal treatment of gender dysphoria) can impact lung disease presentation and symptoms. Many studies in this field suggest that asthma severity varies during the reproductive state, menstrual cycle, and pregnancy in females (40, 402, 403). Similarly, studies in patients with cystic fibrosis (CF) suggest that symptoms vary during the menstrual cycle and are affected by sex hormone levels (191, 404-406). We expand on these topics in the sections below.

5.1. Puberty and Lung Disease

During puberty, sex steroids cause significant changes that lead to sexual maturation. Apart from the differences in physical and sexual characteristics between males and females, there is an intriguing role of sex steroids in lung health and disease. There is a higher number of lung-related hospital admissions for boys than for girls, but after puberty, a gender switch occurs. For example, in asthma cases following childhood, severity decreases postpuberty and into early adulthood only among males, while asthma incidence increases in females during late adolescence (5, 335, 403). Studies have indicated that the trend is more common in children with mild to moderate asthma, who tend to

"outgrow" their asthma during puberty and into adulthood. Moreover, early-onset menarche in some females suggests a likely differential role of sex steroids among individuals, as females with early-onset menarche have cumulatively higher levels of estrogen and progesterone (16, 336, 407).

Severe asthma is equally likely to improve with puberty in both boys and girls when androgen levels, dehydroepiandrosterone sulfate (DHEA-S), increase in both sexes (23). This suggests that the beneficial role of increasing androgen levels during adolescence exceeds the adverse respiratory effects of female hormones (159, 408). Recent research has explored the potential of DHEA as a therapeutic agent in specific patient populations. A pilot study showed that women with asthma and low DHEA-S (<200 μg/dL) experienced improved lung function with oral DHEA-S supplementation (409). Similarly, inhaled (nebulized) DHEA-S has also shown benefit in moderate-to-severe asthma, improving asthma control questionnaire scores in a randomized, placebo-controlled trial over six weeks, with a favorable safety profile and no significant hormonal side effects (410).

5.2. Menopause and Lung Disease

Sex differences also manifest in the aging lung. Physiologically, aging results in a reduction of elastic recoil of the lungs and increased alveolar air volume (411, 412). Circulating concentrations of sex steroids also decrease steeply. The abundance of connective tissue also increases, leading to impaired respiratory function, which is more pronounced in males (413). Aging also influences chronic lung diseases such as acute lung injury, acute respiratory distress syndrome (ARDS), IPF, and COPD, which become more prevalent as age advances (414, 415). Menopause is associated with lower levels of estrogen and progesterone, which coincides with new asthma onset (416, 417). The relationship between menopause and asthma is quite varied and may be influenced by other health conditions, such as obesity and the use of hormone replacement therapies. Furthermore, women going through perimenopause have been found to experience reduced lung function and increased asthma symptoms (416). These findings highlight the importance of further research into how ovarian hormones affect asthma in women at different stages of reproductive life.

5.3. Exogenous Hormones and Lung Disease

Exogenous administration of sex hormones through oral contraceptive use, hormone replacement therapy, or treatment of gender dysphoria can also affect lung health. Data from observational studies and clinical trials

revealed the effects of exogenous hormones in a variety of lung diseases, including asthma, CF, PH, and lung cancer (418–422). Regarding asthma, there have been only a few studies that have looked at how the use of hormonal contraceptives affects risk. Some studies have found no link between using any hormonal contraceptive, including combined oral contraceptives, and asthma or asthma symptoms. Other studies have shown a decreased risk, while some have observed an increased risk of asthma, wheezing, and other allergies (423-425). However, it is not clear whether different types of hormonal contraceptive formulations may have different effects on asthma, as research on the topic is limited. Among postmenopausal women, both estrogen-only and estrogen/progesterone hormone replacement preparations have been linked to an increased risk of asthma, as well as having contrasting effects (407, 426, 427). In terms of PH and CF, oral contraceptive use appears to show beneficial effects, although studies are limited and conducted with low numbers of participants (428). While several contradictory studies have discussed the effects of oral contraceptive use on lung cancer, a recent analysis on cohorts of women who either never smoked or were smokers showed that oral contraceptive use was associated with an increased risk of developing lung cancer (429, 430). Regarding the care of transgender patients receiving hormone therapy and its impact on lung disease outcomes, research is even more limited, with a few reports of increased rates of asthma and CF symptoms (22, 431).

6. CURRENT CHALLENGES AND GAPS IN KNOWLEDGE

Almost a decade after the establishment of the 2016 NIH policy encouraging researchers to consider sex as a biological variable when designing studies and assessing results, several key research gaps persist in our understanding of the role of sex and sex hormones in lung disease susceptibility and outcomes (432, 433). First, there is a need for more mechanistic studies addressing the biological underpinnings of a wide variety of lung diseases. Specifically, more studies are needed to elucidate the roles that sex hormones (e.g., estrogen, testosterone, progesterone) and sex chromosomes play in lung disease development and progression. Second, research gaps continue to exist in understanding how sex hormones influence lung health change across the lifespan, including during key transitions like puberty, pregnancy, and menopause. Third, more data are needed to understand how sex hormones affect responses to treatments for lung diseases. Studies examining potential sex differences in therapeutic efficacy and side effects are required in order to personalize treatment for different patient populations. While sex differences in asthma pathophysiology and type 2 inflammation biomarkers exist, these have not translated into clinically significant differences in response to T2 biologics in the available studies (434, 435). However, most clinical trials have included more women than men, reflecting the higher prevalence of severe asthma in adult women, but few trials have analyzed efficacy outcomes separately by sex (436). Additionally, more studies are needed to understand how sex hormones interact with genetic, environmental, and lifestyle factors to influence lung disease risk and progression, as well as on the intersection of sex and gender in disease risk and presentation (437). This is particularly important as environmental challenges such as air pollution and comorbidities such as obesity and nutritional challenges are on the rise. Finally, there are multiple gaps in our ability to translate basic science findings on sex hormone effects into clinical applications for lung disease prevention, diagnosis, and treatment, particularly in transgender patients. Additional studies are needed to develop sex-specific or hormone-based strategies for personalized lung disease management (35). Addressing these crucial research gaps could significantly advance our management and prevention of sex-based differences in lung diseases and lead to improved, tailored, and equitable approaches for treatment.

7. CONCLUSIONS

Sex differences significantly affect lung health throughout life, beginning as early as lung development during gestation. Male and female sex hormones affect lung development and function at different stages. For instance, female sex hormones have been found to enhance alveologenesis and promote lung maturation during late gestation and early neonatal periods, whereas androgens seem to have the opposite effect. However, after puberty, higher levels of androgens have been associated with improvement in conditions such as severe asthma. This demonstrates the complex and dynamic interplay of sex hormones on lung health, contributing to disease prevalence and severity variations between males and females. Despite extensive evidence from epidemiological and research studies supporting the role of sex hormones in multiple lung diseases, the potential of hormonal modifications in treating these conditions remains an area of limited exploration. This presents an exciting opportunity to advance personalized medicine beyond conventional therapeutic approaches.

CORRESPONDENCE

P. Silveyra (psilveyr@iu.edu).

ACKNOWLEDGMENTS

The authors thank Sahar Abdullah for assistance with literature searches.

GRANTS

This study was supported by National Heart, Lung, and Blood Institute Grant R01HL159764 (to P.S.).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

AUTHOR CONTRIBUTIONS

P.S. prepared figures; P.S., M.B., and C.D.E. drafted manuscript; P.S., M.B., and C.D.E. edited and revised manuscript; P.S., M.B., and C.D.E. approved final version of manuscript.

REFERENCES

- Townsend EA, Miller VM, Prakash YS. Sex differences and sex steroids in lung health and disease. Endocr Rev 33: 1–47, 2012. doi:10.1210/er.2010-0031.
- Sathish V, Martin YN, Prakash YS. Sex steroid signaling: implications for lung diseases. Pharmacol Ther 150: 94–108, 2015. doi:10. 1016/j.pharmthera.2015.01.007.
- Han MK, Arteaga-Solis E, Blenis J, Bourjeily G, Clegg DJ, DeMeo D, Duffy J, Gaston B, Heller NM, Hemnes A, Henske EP, Jain R, Lahm T, Lancaster LH, Lee J, Legato MJ, McKee S, Mehra R, Morris A, Prakash YS, Stampfli MR, Gopal-Srivastava R, Laposky AD, Punturieri A, Reineck L, Tigno X, Clayton J. Female sex and gender in lung/sleep health and disease. Increased understanding of basic biological, pathophysiological, and behavioral mechanisms leading to better health for female patients with lung disease. Am J Respir Crit Care Med 198: 850–858, 2018. doi:10.1164/rccm.201801-0168WS.
- Silveyra P, Fuentes N, Rodriguez Bauza DE. Sex and gender differences in lung disease. Adv Exp Med Biol 1304: 227–258, 2021. doi:10.1007/978-3-030-68748-9_14.
- Naeem A, Silveyra P. Sex differences in paediatric and adult asthma. Eur Med J (Chelmsf) 4: 27–35, 2019.
- Fuentes N, Silveyra P. Endocrine regulation of lung disease and inflammation. Exp Biol Med (Maywood) 243: 1313–1322, 2018. doi:10.1177/1535370218816653.
- Lahm T, Frump AL. Toward harnessing sex steroid signaling as a therapeutic target in pulmonary arterial hypertension. Am J Respir Crit Care Med 195: 284–286, 2017. doi:10.1164/rccm.201609-1906ED.

- Rogliani P, Cavalli F, Ritondo BL, Cazzola M, Calzetta L. Sex differences in adult asthma and COPD therapy: a systematic review.
 Respir Res 23: 222, 2022. doi:10.1186/s12931-022-02140-4.
- Siegfried JM. Sex and gender differences in lung cancer and chronic obstructive lung disease. Endocrinology 163: bqab254, 2022. doi:10.1210/endocr/bqab254.
- Roberge S, Lacasse Y, Tapp S, Tremblay Y, Kari A, Liu J, Fekih M, Qublan HS, Amorim MM, Bujold E. Role of fetal sex in the outcome of antenatal glucocorticoid treatment to prevent respiratory distress syndrome: systematic review and meta-analysis. J Obstet Gynaecol Can 33: 216–226, 2011. doi:10.1016/s1701-2163(16)34822-8.
- Seaborn T, Simard M, Provost PR, Piedboeuf B, Tremblay Y. Sex hormone metabolism in lung development and maturation. Trends Endocrinol Metab 21: 729–738, 2010. doi:10.1016/j.tem.2010.09.001.
- Zein JG, Udeh BL, Teague WG, Koroukian SM, Schlitz NK, Bleecker ER, Busse WB, Calhoun WJ, Castro M, Comhair SA, Fitzpatrick AM, Israel E, Wenzel SE, Holguin F, Gaston BM, Erzurum SC, Severe Asthma Research Program. Impact of age and sex on outcomes and hospital cost of acute asthma in the United States, 2011–2012. PLoS One 11: e0157301, 2016. doi:10.1371/journal.pone.0157301.
- Zein JG, Dweik RA, Comhair SA, Bleecker ER, Moore WC, Peters SP, Busse WW, Jarjour NN, Calhoun WJ, Castro M, Chung KF, Fitzpatrick A, Israel E, Teague WG, Wenzel SE, Love TE, Gaston BM, Erzurum SC; Severe Asthma Research Program. Asthma is more severe in older adults. PLoS One 10: e0133490, 2015. doi:10.1371/ journal.pone.0133490.
- Ekpruke CD, Silveyra P. Sex differences in airway remodeling and inflammation: clinical and biological factors. Front Allergy 3: 875295, 2022. doi:10.3389/falgy.2022.875295.
- Chowdhury NU, Guntur VP, Newcomb DC, Wechsler ME. Sex and gender in asthma. Eur Respir Rev 30: 210067, 2021. doi:10.1183/ 16000617.0067-2021.
- Zein JG, Erzurum SC. Asthma is different in women. Curr Allergy Asthma Rep 15: 28, 2015. doi:10.1007/s11882-015-0528-y.
- Krieger N. Genders, sexes, and health: what are the connections and why does it matter? Int J Epidemiol 32: 652–657, 2003. doi:10. 1093/ije/dyg156.
- White J, Tannenbaum C, Klinge I, Schiebinger L, Clayton J. The integration of sex and gender considerations into biomedical research: lessons from international funding agencies. J Clin Endocrinol Metab 106: 3034–3048, 2021. doi:10.1210/clinem/dgab434.
- Clayton JA. Studying both sexes: a guiding principle for biomedicine. FASEB J 30: 519–524, 2016. doi:10.1096/fj.15-279554.
- Clayton JA, Tannenbaum C. Reporting sex, gender, or both in clinical research? JAMA 316: 1863–1864, 2016. doi:10.1001/jama.2016. 16405.
- Artazcoz L, Borrell C, Cortès I, Escribà-Agüir V, Cascant L. Occupational epidemiology and work related inequalities in health: a gender perspective for two complementary approaches to work and health research. J Epidemiol Community Health 61, Suppl 2: ii39–ii45, 2007. doi:10.1136/jech.2007.059774.
- Lam GY, Goodwin J, Wilcox P, Quon BS. Worsening pulmonary outcomes during sex reassignment therapy in a transgender female with cystic fibrosis (CF) and asthma/allergic bronchopulmonary aspergillosis: a case report. BMC Pulm Med 20: 234, 2020. doi:10. 1186/s12890-020-01272-x.

- DeBoer MD, Phillips BR, Mauger DT, Zein J, Erzurum SC, Fitzpatrick AM, et al. Effects of endogenous sex hormones on lung function and symptom control in adolescents with asthma. BMC Pulm Med 18: 58, 2018. doi:10.1186/s12890-018-0612-x.
- Heidari S, Babor TF, De Castro P, Tort S, Curno M. [Sex and gender equity in research: rationale for the SAGER guidelines and recommended use]. Gac Sanit 33: 203–210, 2019. doi:10.1016/j.gaceta. 2018.04.003.
- Heidari S, Babor TF, De Castro P, Tort S, Curno M. Sex and gender equity in research: rationale for the SAGER guidelines and recommended use. Res Integr Peer Rev 1: 2, 2016. doi:10.1186/s41073-016-0007-6.
- Zucker I, Prendergast BJ. Sex differences in pharmacokinetics predict adverse drug reactions in women. Biol Sex Differ 11: 32, 2020. doi:10.1186/s13293-020-00308-5.
- Willis-Owen SA, Domingo-Sabugo C, Starren E, Liang L, Freidin MB, Arseneault M, Zhang Y, Lu SK, Popat S, Lim E, Nicholson AG, Riazalhosseini Y, Lathrop M, Cookson WO, Moffatt MF. Y disruption, autosomal hypomethylation and poor male lung cancer survival. Sci Rep 11: 12453, 2021. doi:10.1038/s41598-021-91907-8.
- Reddy KD, Oliver BG. Sexual dimorphism in chronic respiratory diseases. Cell Biosci 13: 47, 2023. doi:10.1186/s13578-023-00998-5.
- Clougherty JE. A growing role for gender analysis in air pollution epidemiology. Cien Saude Colet 16: 2221–2238, 2011. doi:10.1590/ s1413-81232011000400021.
- Perelman RH, Palta M, Kirby R, Farrell PM. Discordance between male and female deaths due to the respiratory distress syndrome.
 Pediatrics 78: 238–242, 1986. doi:10.1542/peds.78.2.238.
- Gortner L, Shen J, Tutdibi E. Sexual dimorphism of neonatal lung development. Klin Padiatr 225: 64–69, 2013. doi:10.1055/s-0033-1333758.
- Fitzpatrick T, Buchan SA, Mahant S, Fu L, Kwong JC, Stukel TA, Guttmann A. Pediatric respiratory syncytial virus hospitalizations, 2017–2023. JAMA Netw Open 7: e2416077, 2024. doi:10.1001/jamanetworkopen.2024.16077.
- Ursin RL, Klein SL. Sex differences in respiratory viral pathogenesis and treatments. Annu Rev Virol 8: 393–414, 2021. doi:10.1146/ annurev-virology-091919-092720.
- Safiri S, Carson-Chahhoud K, Karamzad N, Sullman MJ, Nejadghaderi SA, Taghizadieh A, Bell AW, Kolahi AA, Ansarin K, Mansournia MA, Collins GS, Kaufman JS. Prevalence, deaths, and disability-adjusted life-years due to asthma and its attributable risk factors in 204 countries and territories, 1990–2019. Chest 161: 318–329, 2022. doi:10. 1016/j.chest.2021.09.042.
- Jenkins CR, Boulet LP, Lavoie KL, Raherison-Semjen C, Singh D. Personalized treatment of asthma: the importance of sex and gender differences. J Allergy Clin Immunol Pract 10: 963–971.e3, 2022. doi:10.1016/j.jaip.2022.02.002.
- Pignataro FS, Bonini M, Forgione A, Melandri S, Usmani OS. Asthma and gender: the female lung. Pharmacol Res 119: 384–390, 2017. doi:10.1016/j.phrs.2017.02.017.
- Ma JI, Owunna N, Jiang NM, Huo X, Zern E, McNeill JN, Lau ES, Pomerantsev E, Picard MH, Wang D, Ho JE. Sex differences in pulmonary hypertension and associated right ventricular dysfunction (Preprint). medRxiv 2024.04.25.24306398, 2024. doi:10.1101/2024. 04.25.24306398.

- Hye T, Dwivedi P, Li W, Lahm T, Nozik-Grayck E, Stenmark KR, Ahsan F. Newer insights into the pathobiological and pharmacological basis of the sex disparity in patients with pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 320: L1025–L1037, 2021. doi:10.1152/ajplung.00559.2020.
- Zeng Y, Spruit MA, Deng Q, Franssen FM, Chen P. Differences of clinical characteristics and drug prescriptions between men and women with COPD in China. Toxics 11: 102, 2023. doi:10.3390/ toxics11020102.
- Sodhi A, Pisani M, Glassberg MK, Bourjeily G, D'Ambrosio C. Sex and gender in lung disease and sleep disorders: a state-of-the-art review. Chest 162: 647–658, 2022. doi:10.1016/j.chest.2022.03. 006.
- Boyton RJ, Altmann DM. Bronchiectasis: current concepts in pathogenesis, immunology, and microbiology. Annu Rev Pathol 11: 523–554, 2016. doi:10.1146/annurev-pathol-012615-044344.
- Morrissey BM, Harper RW. Bronchiectasis: sex and gender considerations. Clin Chest Med 25: 361–372, 2004. doi:10.1016/j.ccm. 2004.01.011.
- Yang B, Lee DH, Han K, Choi H, Kang HK, Shin DW, Lee H. Female reproductive factors and the risk of bronchiectasis: a nationwide population-based longitudinal study. Biomedicines 10: 303, 2022. doi:10.3390/biomedicines10020303.
- Zaman T, Moua T, Vittinghoff E, Ryu JH, Collard HR, Lee JS. Differences in clinical characteristics and outcomes between men and women with idiopathic pulmonary fibrosis: a multicenter retrospective cohort study. Chest 158: 245–251, 2020. doi:10.1016/j. chest.2020.02.009.
- 45. Han MK, Swigris J, Liu L, Bartholmai B, Murray S, Giardino N, Thompson B, Frederick M, Li D, Schwarz M, Limper A, Flaherty K, Martinez FJ. Gender influences health related quality of life in IPF. Respir Med 104: 724–730, 2010. doi:10.1016/j.rmed.2009.11.019.
- Bonsignore MR, Saaresranta T, Riha RL. Sex differences in obstructive sleep apnoea. Eur Respir Rev 28: 190030, 2019. doi:10.1183/16000617.0030-2019.
- Jackson CL, Powell-Wiley TM, Gaston SA, Andrews MR, Tamura K, Ramos A. Racial/ethnic disparities in sleep health and potential interventions among women in the United States. J Womens Health (Larchmt) 29: 435–442, 2020. doi:10.1089/jwh.2020.8329.
- Feinstein L, McWhorter KL, Gaston SA, Troxel WM, Sharkey KM, Jackson CL. Racial/ethnic disparities in sleep duration and sleep disturbances among pregnant and non-pregnant women in the United States. J Sleep Res 29: e13000, 2020. doi:10.1111/jsr.13000.
- Kawano-Dourado L, Glassberg MK, Assayag D, Borie R, Johannson KA. Sex and gender in interstitial lung diseases. Eur Respir Rev 30: 210105, 2021. doi:10.1183/16000617.0105-2021.
- Xu KF, Xu W, Liu S, Yu J, Tian X, Yang Y, Wang ST, Zhang W, Feng R, Zhang T. Lymphangioleiomyomatosis. Semin Respir Crit Care Med 41: 256–268, 2020. doi:10.1055/s-0040-1702195.
- Klein SL, Dhakal S, Ursin RL, Deshpande S, Sandberg K, Mauvais-Jarvis F. Biological sex impacts COVID-19 outcomes. PLoS Pathog 16: e1008570, 2020. doi:10.1371/journal.ppat.1008570.
- Mauvais-Jarvis F, Bairey Merz N, Barnes PJ, Brinton RD, Carrero JJ, DeMeo DL, De Vries GJ, Epperson CN, Govindan R, Klein SL, Lonardo A, Maki PM, McCullough LD, Regitz-Zagrosek V, Regensteiner JG, Rubin JB, Sandberg K, Suzuki A. Sex and gender: modifiers of health, disease, and medicine. Lancet 396: 565–582, 2020. doi:10.1016/S0140-6736(20)31561-0.

- Papageorgiou AN, Colle E, Farri-Kostopoulos E, Gelfand MM. Incidence of respiratory distress syndrome following antenatal betamethasone: role of sex, type of delivery, and prolonged rupture of membranes. Pediatrics 67: 614–617, 1981.
- Liptzin DR, Landau LI, Taussig LM. Sex and the lung: observations, hypotheses, and future directions. Pediatr Pulmonol 50: 1159–1169, 2015. doi:10.1002/ppul.23178.
- Fang K, Yue S, Wang S, Wang M, Yu X, Ding Y, Lv M, Liu Y, Cao C, Liao Z. The association between sex and neonatal respiratory distress syndrome. BMC Pediatr 24: 129, 2024. doi:10.1186/s12887-024-04596-3.
- Townsel CD, Emmer SF, Campbell WA, Hussain N. Gender differences in respiratory morbidity and mortality of preterm neonates.
 Front Pediatr 5: 6, 2017. doi:10.3389/fped.2017.00006.
- Pelizzo G, Calcaterra V, Baldassarre P, Marinaro M, Taranto S, Ceresola M, Capelo G, Gazzola C, Zuccotti G. The impact of hormones on lung development and function: an overlooked aspect to consider from early childhood. Front Endocrinol (Lausanne) 15: 1425149, 2024. doi:10.3389/fendo.2024.1425149.
- Savchuk I, Morvan ML, Antignac JP, Kurek M, Le Bizec B, Söder O, Svechnikov K. Ontogenesis of human fetal testicular steroidogenesis at early gestational age. Steroids 141: 96–103, 2019. doi:10.1016/j.steroids.2018.12.001.
- Nielsen HC. Androgen receptors influence the production of pulmonary surfactant in the testicular feminization mouse fetus. J Clin Invest 76: 177–181, 1985. doi:10.1172/JCI111943.
- Patrone C, Cassel TN, Pettersson K, Piao YS, Cheng G, Ciana P, Maggi A, Warner M, Gustafsson JA, Nord M. Regulation of postnatal lung development and homeostasis by estrogen receptor beta. Mol Cell Biol 23: 8542–8552, 2003. doi:10.1128/MCB.23.23.8542-8552.2003.
- Fiaturi N, Russo JW, Nielsen HC, Castellot JJ. CCN5 in alveolar epithelial proliferation and differentiation during neonatal lung oxygen injury. J Cell Commun Signal 12: 217–229, 2018. doi:10.1007/s12079-017-0443-1.
- Kim JH, Lee SM, Lee YH. Risk factors for respiratory distress syndrome in full-term neonates. Yeungnam Univ J Med 35: 187–191, 2018. doi:10.12701/yujm.2018.35.2.187.
- Kimura Y, Suzuki T, Kaneko C, Darnel AD, Akahira J, Ebina M, Nukiwa T, Sasano H. Expression of androgen receptor and 5alphareductase types 1 and 2 in early gestation fetal lung: a possible correlation with branching morphogenesis. Clin Sci (Lond) 105: 709– 713, 2003. doi:10.1042/CS20030236.
- Dammann CE, Ramadurai SM, McCants DD, Pham LD, Nielsen HC. Androgen regulation of signaling pathways in late fetal mouse lung development. Endocrinology 141: 2923–2929, 2000. doi:10.1210/ endo.141.8.7615.
- Carey MA, Card JW, Voltz JW, Arbes SJ, Germolec DR, Korach KS, Zeldin DC. It's all about sex: gender, lung development and lung disease. Trends Endocrinol Metab 18: 308–313, 2007. doi:10.1016/j. tem.2007.08.003.
- Massaro GD, Mortola JP, Massaro D. Estrogen modulates the dimensions of the lung's gas-exchange surface area and alveoli in female rats. Am J Physiol Lung Cell Mol Physiol 270: L110–L114, 1996. doi:10.1152/ajplung.1996.270.1.L110.
- Massaro D, Massaro GD. Estrogen regulates pulmonary alveolar formation, loss, and regeneration in mice. Am J Physiol Lung Cell

- **Mol Physiol** 287: L1154–L1159, 2004. doi:10.1152/ajplung.00228. 2004.
- Massaro D, Clerch LB, Massaro GD. Estrogen receptor-alpha regulates pulmonary alveolar loss and regeneration in female mice: morphometric and gene expression studies. Am J Physiol Lung Cell Mol Physiol 293: L222–L228, 2007. doi:10.1152/ajplung.00384.
- Van Marter LJ. Epidemiology of bronchopulmonary dysplasia.
 Semin Fetal Neonatal Med 14: 358–366, 2009. doi:10.1016/j.siny. 2009.08.007.
- Stark MJ, Hodyl NA, Wright IM, Clifton VL. Influence of sex and glucocorticoid exposure on preterm placental pro-oxidant-antioxidant balance. Placenta 32: 865–870, 2011. doi:10.1016/j.placenta.2011. 08.010.
- Stark MJ, Hodyl NA, Wright IM, Clifton V. The influence of sex and antenatal betamethasone exposure on vasoconstrictors and the preterm microvasculature. J Matern Fetal Neonatal Med 24: 1215– 1220, 2011. doi:10.3109/14767058.2011.569618.
- Lee R, Kostina E, Dassios T, Greenough A. Influence of sex on the requirement for and outcomes following late postnatal corticosteroid treatment. Eur J Pediatr 182: 1417–1423, 2023. doi:10.1007/ s00431-023-04826-3.
- Chen C, Tian T, Liu L, Zhang J, Fu H. Gender-related efficacy of pulmonary surfactant in infants with respiratory distress syndrome: a STROBE compliant study. Medicine (Baltimore) 97: e0425, 2018. doi:10.1097/MD.0000000000010425.
- van Westering-Kroon E, Huizing MJ, Villamor-Martínez E, Villamor E. Male disadvantage in oxidative stress-associated complications of prematurity: a systematic review, meta-analysis and meta-regression.
 Antioxidants (Basel) 10: 1490, 2021. doi:10.3390/antiox10091490.
- Lingappan K, Alur P, Eichenwald E. The need to address sex as a biological variable in neonatal clinical studies. J Pediatr 255: 17–21, 2023. doi:10.1016/j.jpeds.2022.11.021.
- Schramm CM, Grunstein MM. Corticosteroid modulation of Na⁺-K⁺ pump-mediated relaxation in maturing airway smooth muscle.
 Br J Pharmacol 119: 807–812, 1996. doi:10.1111/j.1476-5381.1996. tb15744.x.
- Kaltofen T, Haase M, Thome UH, Laube M. Male sex is associated with a reduced alveolar epithelial sodium transport. PLoS One 10: e0136178, 2015. doi:10.1371/journal.pone.0136178.
- Perez M, Robbins ME, Revhaug C, Saugstad OD. Oxygen radical disease in the newborn, revisited: oxidative stress and disease in the newborn period. Free Radic Biol Med 142: 61–72, 2019. doi:10. 1016/i.freeradbiomed.2019.03.035.
- Solberg R, Perrone S, Saugstad OD, Buonocore G. Risks and benefits of oxygen in the delivery room. J Matern Fetal Neonatal Med 25: 41–44, 2012. doi:10.3109/14767058.2012.665236.
- Lavoie JC, Tremblay A. Sex-specificity of oxidative stress in newborns leading to a personalized antioxidant nutritive strategy.
 Antioxidants (Basel) 7: 49, 2018. doi:10.3390/antiox7040049.
- Vu HD, Dickinson C, Kandasamy Y. Sex difference in mortality for premature and low birth weight neonates: a systematic review. Am J Perinatol 35: 707–715, 2018. doi:10.1055/s-0037-1608876.
- 82. Garfinkle J, Yoon EW, Alvaro R, Nwaesei C, Claveau M, Lee SK, Shah PS, Canadian Neonatal Network Investigators. Trends in sexspecific differences in outcomes in extreme preterms: progress or

- natural barriers? **Arch Dis Child Fetal Neonatal Ed** 105: 158–163, 2020. doi:10.1136/archdischild-2018-316399.
- Vento M, Aguar M, Escobar J, Arduini A, Escrig R, Brugada M, Izquierdo I, Asensi MA, Sastre J, Saenz P, Gimeno A. Antenatal steroids and antioxidant enzyme activity in preterm infants: influence of gender and timing. Antioxid Redox Signal 11: 2945–2955, 2009. doi:10.1089/ars.2009.2671.
- Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med 163: 1723–1729, 2001. doi:10.1164/ajrccm.163.7. 2011060.
- 85. Rivera L, Siddaiah R, Oji-Mmuo C, Silveyra GR, Silveyra P. Biomarkers for bronchopulmonary dysplasia in the preterm infant. Front Pediatr 4: 33, 2016. doi:10.3389/fped.2016.00033.
- Jensen EA, Schmidt B. Epidemiology of bronchopulmonary dysplasia. Birth Defects Res A Clin Mol Teratol 100: 145–157, 2014. doi:10.1002/bdra.23235.
- May C, Patel S, Kennedy C, Pollina E, Rafferty GF, Peacock JL, Greenough A. Prediction of bronchopulmonary dysplasia. Arch Dis Child Fetal Neonatal Ed 96: F410–F416, 2011. doi:10.1136/adc.2010. 189597.
- Dassios T, Harris C, Williams EE, Greenough A. Sex differences in preterm respiratory morbidity: a recent whole-population study. Acta Paediatr 113: 745–750, 2024. doi:10.1111/apa.17071.
- Hansmann G, Sallmon H, Roehr CC, Kourembanas S, Austin ED, Koestenberger M; European Pediatric Pulmonary Vascular Disease Network (EPPVDN). Pulmonary hypertension in bronchopulmonary dysplasia. Pediatr Res 89: 446–455, 2021. doi:10.1038/s41390-020-0993-4.
- Davidson LM, Berkelhamer SK. Bronchopulmonary dysplasia: chronic lung disease of infancy and long-term pulmonary outcomes. J Clin Med 6: 4, 2017. doi:10.3390/jcm6010004.
- O'Connor MG, Cornfield DN, Austin ED. Pulmonary hypertension in the premature infant: a challenging comorbidity in a vulnerable population. Curr Opin Pediatr 28: 324–330, 2016. doi:10.1097/MOP. 00000000000000355.
- 92. Berkelhamer SK, Mestan KK, Steinhorn RH. Pulmonary hypertension in bronchopulmonary dysplasia. **Semin Perinatol** 37: 124–131, 2013. doi:10.1053/j.semperi.2013.01.009.
- An HS, Bae EJ, Kim GB, Kwon BS, Beak JS, Kim EK, Kim HS, Choi JH, Noh Cl, Yun YS. Pulmonary hypertension in preterm infants with bronchopulmonary dysplasia. Korean Circ J 40: 131–136, 2010. doi:10.4070/kcj.2010.40.3.131.
- Yang J, Kingsford RA, Horwood J, Epton MJ, Swanney MP, Stanton J, Darlow BA. Lung function of adults born at very low birth weight. Pediatrics 145: e20192359, 2020. doi:10.1542/peds.2019-2359.
- Hwang JS, Rehan VK. Recent advances in bronchopulmonary dysplasia: pathophysiology, prevention, and treatment. Lung 196: 129–138, 2018. doi:10.1007/s00408-018-0084-z.
- McEvoy CT, Jain L, Schmidt B, Abman S, Bancalari E, Aschner JL. Bronchopulmonary dysplasia: NHLBI workshop on the primary prevention of chronic lung diseases. Ann Am Thorac Soc 11 Suppl 2: S146–153, 2014. doi:10.1513/AnnalsATS.201312-424LD.
- Ali K, Greenough A. Long-term respiratory outcome of babies born prematurely. Ther Adv Respir Dis 6: 115–120, 2012. doi:10.1177/ 1753465812436803.

- Landry JS, Chan T, Lands L, Menzies D. Long-term impact of bronchopulmonary dysplasia on pulmonary function. Can Respir J 18: 265–270, 2011. doi:10.1155/2011/547948.
- Urs R, Kotecha S, Hall GL, Simpson SJ. Persistent and progressive long-term lung disease in survivors of preterm birth. Paediatr Respir Rev 28: 87–94, 2018. doi:10.1016/j.prrv.2018.04.001.
- Joss-Moore LA, Lane RH. The developmental origins of adult disease. Curr Opin Pediatr 21: 230–234, 2009. doi:10.1097/mop. 0b013e328326773b.
- 101. Keller RL, Feng R, DeMauro SB, Ferkol T, Hardie W, Rogers EE, Stevens TP, Voynow JA, Bellamy SL, Shaw PA, Moore PE; Prematurity and Respiratory Outcomes Program. Bronchopulmonary dysplasia and perinatal characteristics predict 1-year respiratory outcomes in newborns born at extremely low gestational age: a prospective cohort study. J Pediatr 187: 89–97.e3, 2017. doi:10.1016/j. jpeds.2017.04.026.
- Bentsen MH, Markestad T, Øymar K, Halvorsen T. Lung function at term in extremely preterm-born infants: a regional prospective cohort study. BMJ Open 7: e016868, 2017. doi:10.1136/bmjopen-2017-016868.
- Hilgendorff A, O'Reilly MA. Bronchopulmonary dysplasia early changes leading to long-term consequences. Front Med (Lausanne) 2: 2, 2015. doi:10.3389/fmed.2015.00002.
- Bancalari E, Jain D. Bronchopulmonary dysplasia: 50 years after the original description. Neonatology 115: 384–391, 2019. doi:10. 1159/000497422.
- Naeem A, Ahmed I, Silveyra P. Bronchopulmonary dysplasia: an update on experimental therapeutics. Eur Med J (Chelmsf) 4: 20– 29, 2019.
- Strueby L, Thébaud B. Novel therapeutics for bronchopulmonary dysplasia. Curr Opin Pediatr 30: 378–383, 2018. doi:10.1097/MOP. 00000000000000613.
- Albert R, Lee A, Lingappan K. Response to therapeutic interventions in the NICU: role of sex as a biological variable. Neoreviews 24: e797–e805, 2023. doi:10.1542/neo.24-12-e797.
- Lingappan K, Jiang W, Wang L, Moorthy B. Sex-specific differences in neonatal hyperoxic lung injury. Am J Physiol Lung Cell Mol Physiol 311: L481–L493, 2016. doi:10.1152/ajplung.00047.2016.
- 109. Lingappan K, Jiang W, Wang L, Couroucli XI, Barrios R, Moorthy B. Sex-specific differences in hyperoxic lung injury in mice: implications for acute and chronic lung disease in humans. Toxicol Appl Pharmacol 272: 281–290, 2013. doi:10.1016/j.taap.2013.06.007.
- 110. Fulton CT, Cui TX, Goldsmith AM, Bermick J, Popova AP. Gene expression signatures point to a male sex-specific lung mesenchymal cell PDGF receptor signaling defect in infants developing bronchopulmonary dysplasia. Sci Rep 8: 17070, 2018. doi:10.1038/s41598-018-35256-z.
- 111. Cheng H, Wang H, Wu C, Zhang Y, Bao T, Tian Z. Proteomic analysis of sex differences in hyperoxic lung injury in neonatal mice. Int J Med Sci 17: 2440–2448, 2020. doi:10.7150/ijms.42073.
- 112. Cantu A, Gutierrez MC, Dong X, Leek C, Sajti E, Lingappan K. Remarkable sex-specific differences at single-cell resolution in neonatal hyperoxic lung injury. Am J Physiol Lung Cell Mol Physiol 324: L5–L31, 2023. doi:10.1152/ajplung.00269.2022.
- Leek C, Cantu A, Sonti S, Gutierrez MC, Eldredge L, Sajti E, Xu HN,
 Lingappan K. Role of sex as a biological variable in neonatal

- alveolar macrophages. **Redox Biol** 75: 103296, 2024. doi:10.1016/j. redox.2024.103296.
- 114. Coarfa C, Zhang Y, Maity S, Perera DN, Jiang W, Wang L, Couroucli X, Moorthy B, Lingappan K. Sexual dimorphism of the pulmonary transcriptome in neonatal hyperoxic lung injury: identification of angiogenesis as a key pathway. Am J Physiol Lung Cell Mol Physiol 313: L991–L1005, 2017. doi:10.1152/ajplung.00230.2017.
- Grimm SL, Dong X, Zhang Y, Carisey AF, Arnold AP, Moorthy B, Coarfa C, Lingappan K. Effect of sex chromosomes versus hormones in neonatal lung injury. JCI Insight 6: e146863, 2021. doi:10. 1172/jci.insight.146863.
- 116. Siddaiah R, Emery L, Stephens H, Donnelly A, Erkinger J, Wisecup K, Hicks SD, Kawasawa YI, Oji-Mmuo C, Amatya S, Silveyra P. Early salivary miRNA expression in extreme low gestational age newborns. Life (Basel) 12: 506, 2022. doi:10.3390/life12040506.
- 117. Oji-Mmuo CN, Siddaiah R, Montes DT, Pham MA, Spear D, Donnelly A, Fuentes N, Imamura-Kawasawa Y, Howrylak JA, Thomas NJ, Silveyra P. Tracheal aspirate transcriptomic and miRNA signatures of extreme premature birth with bronchopulmonary dysplasia. J Perinatol 41: 551–561, 2021. doi:10.1038/s41372-020-00868-9.
- 118. Lal CV, Olave N, Travers C, Rezonzew G, Dolma K, Simpson A, Halloran B, Aghai Z, Das P, Sharma N, Xu X, Genschmer K, Russell D, Szul T, Yi N, Blalock JE, Gaggar A, Bhandari V, Ambalavanan N. Exosomal microRNA predicts and protects against severe bronchopulmonary dysplasia in extremely premature infants. JCl Insight 3: e93994, 2018. doi:10.1172/jci.insight.93994.
- 119. Wu YT, Chen WJ, Hsieh WS, Tsao PN, Yu SL, Lai CY, Lee WC, Jeng SF. MicroRNA expression aberration associated with bronchopul-monary dysplasia in preterm infants: a preliminary study. Respir Care 58: 1527–1535, 2013. doi:10.4187/respcare.02166.
- Dong J, Carey WA, Abel S, Collura C, Jiang G, Tomaszek S, Sutor S, Roden AC, Asmann YW, Prakash YS, Wigle DA. MicroRNA-mRNA interactions in a murine model of hyperoxia-induced bronchopulmonary dysplasia. BMC Genomics 13: 204, 2012. doi:10.1186/1471-2164-13-204.
- Xi Y, Wang Y. Insight into the roles of non-coding RNA in bronchopulmonary dysplasia. Front Med (Lausanne) 8: 761724, 2021. doi:10.3389/fmed.2021.761724.
- Maeda H, Li X, Go H, Dennery PA, Yao H. miRNA signatures in bronchopulmonary dysplasia: implications for biomarkers, pathogenesis, and therapeutic options. Front Biosci (Landmark Ed) 29: 271, 2024.
- 123. Zhang Y, Coarfa C, Dong X, Jiang W, Hayward-Piatkovskyi B, Gleghorn JP, Lingappan K. MicroRNA-30a as a candidate underlying sex-specific differences in neonatal hyperoxic lung injury: implications for BPD. Am J Physiol Lung Cell Mol Physiol 316: L144– L156, 2019. doi:10.1152/ajplung.00372.2018.
- 124. Grimm SL, Reddick S, Dong X, Leek C, Wang AX, Gutierrez MC, Hartig SM, Moorthy B, Coarfa C, Lingappan K. Loss of microRNA-30a and sex-specific effects on the neonatal hyperoxic lung injury. Biol Sex Differ 14: 50, 2023. doi:10.1186/s13293-023-00535-6.
- 125. Thomas N, Fan R, Diangelo S, Hess J, Floros J. Haplotypes of the surfactant protein genes A and D as susceptibility factors for the development of respiratory distress syndrome. Acta Paediatr 96: 985–989, 2007. doi:10.1111/j.1651-2227.2007.00319.x.
- Hallman M, Haataja R. Surfactant protein polymorphisms and neonatal lung disease. Semin Perinatol 30: 350–361, 2006. doi:10. 1053/j.semperi.2006.09.002.

- Marttila R, Haataja R, Guttentag S, Hallman M. Surfactant protein A and B genetic variants in respiratory distress syndrome in singletons and twins. Am J Respir Crit Care Med 168: 1216–1222, 2003. doi:10.1164/rccm.200304-524OC.
- 128. Noutsios GT, Thorenoor N, Zhang X, Phelps DS, Umstead TM, Durrani F, Floros J. Major effect of oxidative stress on the male, but not female, SP-A1 type II Cell miRNome. Front Immunol 10: 1514, 2019. doi:10.3389/fimmu.2019.01514.
- 129. Thorenoor N, Kawasawa YI, Gandhi CK, Floros J. Sex-specific regulation of gene expression networks by surfactant protein A (SP-A) variants in alveolar macrophages in response to Klebsiella pneumoniae. Front Immunol 11: 1290, 2020. doi:10.3389/fimmu.2020.01290.
- 130. Thorenoor N, Umstead TM, Zhang X, Phelps DS, Floros J. Survival of surfactant protein-A1 and SP-A2 transgenic mice after Klebsiella pneumoniae infection, exhibits sex-, gene-, and variant specific differences; treatment with surfactant protein improves survival. Front Immunol 9: 2404, 2018. doi:10.3389/fimmu.2018.02404.
- 131. Thorenoor N, Zhang X, Umstead TM, Scott Halstead E, Phelps DS, Floros J. Differential effects of innate immune variants of surfactant protein-A1 (SFTPA1) and SP-A2 (SFTPA2) in airway function after Klebsiella pneumoniae infection and sex differences. Respir Res 19: 23, 2018. doi:10.1186/s12931-018-0723-1.
- 132. Amatya S, Lanza M, Umstead TM, Chroneos ZC. Loss of surfactant protein A alters perinatal lung morphology and susceptibility to hyperoxia-induced bronchopulmonary dysplasia. Antioxidants (Basel) 13: 1309, 2024. doi:10.3390/antiox13111309.
- 133. De Luca D, Arroyo R, Foligno S, Autilio C, Touqui L, Kingma PS. Early life surfactant protein-D levels in bronchoalveolar lavage fluids of extremely preterm neonates. Am J Physiol Lung Cell Mol Physiol 325: L411–L418, 2023. doi:10.1152/ajplung.00079.2023.
- 134. Vinod S, Gow A, Weinberger B, Potak D, Hiatt M, Chandra S, Hegyi T. Serum surfactant protein D as a marker for bronchopulmonary dysplasia. J Matern Fetal Neonatal Med 32: 815–819, 2019. doi:10. 1080/14767058.2017.1392506.
- Ekpruke CD, Silveyra P. Airway remodeling in asthma. Ann Transl Med 10: 1189, 2022. doi:10.21037/atm-22-5059.
- Chiarella SE, Cardet JC, Prakash YS. Sex, cells, and asthma. Mayo
 Clin Proc 96: 1955–1969, 2021. doi:10.1016/j.mayocp.2020.12.007.
- 137. Maspero J, Adir Y, Al-Ahmad M, Celis-Preciado CA, Colodenco FD, Giavina-Bianchi P, Lababidi H, Ledanois O, Mahoub B, Perng DW, Vazquez JC, Yorgancioglu A. Type 2 inflammation in asthma and other airway diseases. ERJ Open Res 8: 00576-2021, 2022. doi:10. 1183/23120541.00576-2021.
- 138. Frøssing L, Silberbrandt A, Von Bülow A, Backer V, Porsbjerg C. The prevalence of subtypes of type 2 inflammation in an unselected population of patients with severe asthma. J Allergy Clin Immunol Pract 9: 1267–1275, 2021. doi:10.1016/j.jaip.2020.09.051.
- Ricciardolo FL, Sprio AE, Baroso A, Gallo F, Riccardi E, Bertolini F, Carriero V, Arrigo E, Ciprandi G. Characterization of T2-low and T2high asthma phenotypes in real-life. Biomedicines 9: 1684, 2021. doi:10.3390/biomedicines9111684.
- Dunican EM, Fahy JV. Asthma and corticosteroids: time for a more precise approach to treatment. Eur Respir J 49: 1701167, 2017. doi:10.1183/13993003.01167-2017.
- Wu W, Bleecker E, Moore W, Busse WW, Castro M, Chung KF, Calhoun WJ, Erzurum S, Gaston B, Israel E, Curran-Everett D, Wenzel SE. Unsupervised phenotyping of severe asthma research

- program participants using expanded lung data. **J Allergy Clin Immunol** 133: 1280–1288, 2014. doi:10.1016/j.jaci.2013.11.042.
- 142. Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X, D'Agostino R, Castro M, Curran-Everett D, Fitzpatrick AM, Gaston B, Jarjour NN, Sorkness R, Calhoun WJ, Chung KF, Comhair SA, Dweik RA, Israel E, Peters SP, Busse WW, Erzurum SC, Bleecker ER; National Heart Lung, and Blood Institute's Severe Asthma Research Program. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med 181: 315–323, 2010. doi:10.1164/rccm.200906-0896OC.
- 143. Moore WC, Bleecker ER, Curran-Everett D, Erzurum SC, Ameredes BT, Bacharier L, Calhoun WJ, Castro M, Chung KF, Clark MP, Dweik RA, Fitzpatrick AM, Gaston B, Hew M, Hussain I, Jarjour NN, Israel E, Levy BD, Murphy JR, Peters SP, Teague WG, Meyers DA, Busse WW, Wenzel SE. Characterization of the severe asthma phenotype by the National Heart, Lung, and Blood Institute's Severe Asthma Research Program. J Allergy Clin Immunol 119: 405–413, 2007. doi:10.1016/j.jaci.2006.11.639.
- 144. Haldar P, Pavord ID, Shaw DE, Berry MA, Thomas M, Brightling CE, Wardlaw AJ, Green RH. Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med 178: 218–224, 2008. doi:10.1164/ rccm.200711-1754OC.
- Shah R, Newcomb DC. Sex bias in asthma prevalence and pathogenesis. Front Immunol 9: 2997, 2018. doi:10.3389/fimmu.2018. 02997.
- Rodriguez Bauza DE, Silveyra P. Asthma, atopy, and exercise: sex differences in exercise-induced bronchoconstriction. Exp Biol Med (Maywood) 246: 1400–1409, 2021. doi:10.1177/15353702211003858.
- Rodriguez Bauza DE, Silveyra P. Sex differences in exerciseinduced bronchoconstriction in athletes: a systematic review and meta-analysis. Int J Environ Res Public Health 17: 7270, 2020. doi:10.3390/ijerph17197270.
- 148. Swed S, Sawaf B, Al-Obeidat F, Hafez W, Rakab A, Alibrahim H, Nasif MN, Alghalyini B, Zia Zaidi AR, Alshareef L, Alqatati F, Zamrath Zahir F, Ahmed AI, Alom M, Sultan A, AlMahmoud A, Bakkour A, Cherrez-Ojeda I. Asthma prevalence among United States population insights from NHANES data analysis. Sci Rep 14: 8059, 2024. doi:10.1038/s41598-024-58429-5.
- Ricciardolo FL, Levra S, Sprio AE, Bertolini F, Carriero V, Gallo F, Ciprandi G. Asthma in the real-world: the relevance of gender. Int Arch Allergy Immunol 181: 462–466, 2020. doi:10.1159/000506808.
- Yung JA, Fuseini H, Newcomb DC. Hormones, sex, and asthma.
 Ann Allergy Asthma Immunol 120: 488–494, 2018. doi:10.1016/j. anai.2018.01.016.
- 151. Loewenthal L, Busby J, McDowell R, Brown T, Burhan H, Chaudhuri R, Dennison P, Dodd JW, Doe S, Faruqi S, Gore R, Idris E, Jackson DJ, Patel M, Pantin T, Pavord I, Pfeffer PE, Price DB, Rupani H, Siddiqui S, Heaney LG, Menzies-Gow A, UK Severe Asthma Registry. Impact of sex on severe asthma: a cross-sectional retrospective analysis of UK primary and specialist care. Thorax 79: 403–411, 2024. doi:10.1136/thorax-2023-220512.
- 152. Senna G, Latorre M, Bugiani M, Caminati M, Heffler E, Morrone D, Paoletti G, Parronchi P, Puggioni F, Blasi F, Canonica GW, Paggiaro P, SANI Network. Sex differences in severe asthma: results from Severe Asthma Network in Italy-SANI. Allergy Asthma Immunol Res 13: 219–228, 2021. doi:10.4168/aair.2021.13.2.219.
- 153. Pate CA, Zahran HS, Qin X, Johnson C, Hummelman E, Malilay J. Asthma surveillance United States, 2006–2018. MMWR Surveill Summ 70: 1–32, 2021. doi:10.15585/mmwr.ss7005a1.

- 154. Akinbami LJ, Moorman JE, Bailey C, Zahran HS, King M, Johnson CA, Liu X. Trends in asthma prevalence, health care use, and mortality in the United States, 2001–2010. NCHS Data Brief 94: 1–8, 2012.
- 155. Johnston NW, Sears MR. Asthma exacerbations. 1: epidemiology. Thorax 61: 722–728, 2006. doi:10.1136/thx.2005.045161.
- 156. Fuseini H, Newcomb DC. Mechanisms driving gender differences in asthma. Curr Allergy Asthma Rep 17: 19, 2017. doi:10.1007/ s11882-017-0686-1.
- Lokaj-Berisha V, Gacaferri Lumezi B, Berisha N. Low serum levels of dehydroepiandrosterone sulfate and testosterone in Albanian female patients with allergic disease. Sci Rep 11: 5611, 2021. doi:10. 1038/s41598-021-85214-5.
- Reyes-García J, Montaño LM, Carbajal-García A, Wang YX. Sex hormones and lung inflammation. Adv Exp Med Biol 1304: 259–321, 2021. doi:10.1007/978-3-030-68748-9_15.
- 159. Zein JG, McManus JM, Sharifi N, Erzurum SC, Marozkina N, Lahm T, Giddings O, Davis MD, DeBoer MD, Comhair SA, Bazeley P, Kim HJ, Busse W, Calhoun W, Castro M, Chung KF, Fahy JV, Israel E, Jarjour NN, Levy BD, Mauger DT, Moore WC, Ortega VE, Peters M, Bleecker ER, Meyers DA, Zhao Y, Wenzel SE, Gaston B. Benefits of airway androgen receptor expression in human asthma. Am J Respir Crit Care Med 204: 285–293, 2021. doi:10.1164/rccm. 202009-3720OC.
- Canguven O, Albayrak S. Do low testosterone levels contribute to the pathogenesis of asthma? Med Hypotheses 76: 585–588, 2011. doi:10.1016/j.mehy.2011.01.006.
- Chen W, Mempel M, Schober W, Behrendt H, Ring J. Gender difference, sex hormones, and immediate type hypersensitivity reactions. Allergy 63: 1418–1427, 2008. doi:10.1111/j.1398-9995.2008. 01880.x.
- Ambhore NS, Kalidhindi RS, Sathish V. Sex-steroid signaling in lung diseases and inflammation. Adv Exp Med Biol 1303: 243–273, 2021. doi:10.1007/978-3-030-63046-1_14.
- 163. Bonds RS, Midoro-Horiuti T. Estrogen effects in allergy and asthma. Curr Opin Allergy Clin Immunol 13: 92–99, 2013. doi:10.1097/ACI. 0b013e32835a6dd6.
- 164. Pace S, Sautebin L, Werz O. Sex-biased eicosanoid biology: impact for sex differences in inflammation and consequences for pharmacotherapy. Biochem Pharmacol 145: 1–11, 2017. doi:10.1016/j.bcp. 2017.06.128.
- 165. Pace S, Pergola C, Dehm F, Rossi A, Gerstmeier J, Troisi F, Pein H, Schaible AM, Weinigel C, Rummler S, Northoff H, Laufer S, Maier TJ, Rådmark O, Samuelsson B, Koeberle A, Sautebin L, Werz O. Androgen-mediated sex bias impairs efficiency of leukotriene biosynthesis inhibitors in males. J Clin Invest 127: 3167–3176, 2017. doi:10.1172/JCI92885.
- 166. Montaño LM, Flores-Soto E, Sommer B, Solís-Chagoyán H, Perusquía M. Androgens are effective bronchodilators with anti-inflammatory properties: a potential alternative for asthma therapy. Steroids 153: 108509, 2020. doi:10.1016/j.steroids.2019.108509.
- 167. Koleva PT, Tun HM, Konya T, Guttman DS, Becker AB, Mandhane PJ, Turvey SE, Subbarao P, Sears MR, Scott JA, Kozyrskyj AL, CHILD Study Investigators. Sex-specific impact of asthma during pregnancy on infant gut microbiota. Eur Respir J 50: 1700280, 2017. doi:10.1183/13993003.00280-2017.
- Abellan A, Mensink-Bout SM, Garcia-Esteban R, Beneito A, Chatzi L, Duarte-Salles T, Fernandez MF, Garcia-Aymerich J, Granum B,

SEX, HORMONES, AND LUNG HEALTH

- Iñiguez C, Jaddoe VW, Kannan K, Lertxundi A, Lopez-Espinosa MJ, Philippat C, Sakhi AK, Santos S, Siroux V, Sunyer J, Trasande L, Vafeiadi M, Vela-Soria F, Yang TC, Zabaleta C, Vrijheid M, Duijts L, Casas M. In utero exposure to bisphenols and asthma, wheeze, and lung function in school-age children: a prospective meta-analysis of 8 European birth cohorts. **Environ Int** 162: 107178, 2022. doi:10.1016/j.envint.2022.107178.
- 169. Silveyra P, Zeldin DC. It all begins in utero: cord blood bacterial DNA and T cell immunity. Am J Respir Cell Mol Biol 57: 379–380, 2017. doi:10.1165/rcmb.2017-0185ED.
- 170. Loisel DA, Tan Z, Tisler CJ, Evans MD, Gangnon RE, Jackson DJ, Gern JE, Lemanske RF, Jr, Ober C. IFNG genotype and sex interact to influence the risk of childhood asthma. J Allergy Clin Immunol 128: 524–531, 2011. doi:10.1016/j.jaci.2011.06.016.
- 171. Myers RA, Scott NM, Gauderman WJ, Qiu W, Mathias RA, Romieu I, et al. Genome-wide interaction studies reveal sex-specific asthma risk alleles. Hum Mol Genet 23: 5251–5259, 2014. doi:10.1093/hmg/ddu222.
- 172. Espuela-Ortiz A, Herrera-Luis E, Lorenzo-Díaz F, Hu D, Eng C, Villar J, Rodriguez-Santana JR, Burchard EG, Pino-Yanes M. Role of sex on the genetic susceptibility to childhood asthma in latinos and african americans. J Pers Med 11: 1140, 2021. doi:10.3390/jpm11111140.
- Stikker BS, Hendriks RW, Stadhouders R. Decoding the genetic and epigenetic basis of asthma. Allergy 78: 940–956, 2023. doi:10. 1111/all.15666.
- 174. Zein JG, Bazeley P, Meyers D, Bleecker E, Gaston B, Hu B, Attaway A, Ortega V. A between-sex comparison of the genomic architecture of asthma. Am J Respir Cell Mol Biol 68: 456–458, 2023. doi:10.1165/rcmb.2022-0430LE.
- 175. Gershoni M, Pietrokovski S. The landscape of sex-differential transcriptome and its consequent selection in human adults. BMC Biol 15: 7, 2017. doi:10.1186/s12915-017-0352-z.
- Gautam Y, Afanador Y, Abebe T, López JE, Mersha TB. Genomewide analysis revealed sex-specific gene expression in asthmatics.
 Hum Mol Genet 28: 2600–2614, 2019. doi:10.1093/hmg/ddz074.
- Bronte-Moreno O, González-Barcala FJ, Muñoz-Gall X, Pueyo-Bastida A, Ramos-González J, Urrutia-Landa I. Impact of air pollution on asthma: a scoping review. Open Respir Arch 5: 100229, 2023. doi:10.1016/j.opresp.2022.100229.
- 178. Castro-Rodriguez JA, Forno E, Rodriguez-Martinez CE, Celedón JC. Risk and protective factors for childhood asthma: what is the evidence? J Allergy Clin Immunol Pract 4: 1111–1122, 2016. doi:10.1016/j.jaip.2016.05.003.
- 179. Martin TR, Feldman HA, Fredberg JJ, Castile RG, Mead J, Wohl ME. Relationship between maximal expiratory flows and lung volumes in growing humans. J Appl Physiol (1985) 65: 822–828, 1988. doi:10.1152/jappl.1988.65.2.822.
- 180. McGinn EA, Mandell EW, Smith BJ, Duke JW, Bush A, Abman SH. Dysanapsis as a determinant of lung function in development and disease. Am J Respir Crit Care Med 208: 956–963, 2023. doi:10. 1164/rccm.202306-1120PP.
- Anderson J, Do LA, Wurzel D, Licciardi PV. Understanding the increased susceptibility to asthma development in preterm infants.
 Allergy 78: 928–939, 2023. doi:10.1111/all.15662.
- Chhabra SK. Premenstrual asthma. Indian J Chest Dis Allied Sci 47: 109–116. 2005.

- Mirdal GM, Petersson B, Weeke B, Vibits A. Asthma and menstruation: the relationship between psychological and bronchial hyperreactivity. Br J Med Psychol 71: 47–55, 1998. doi:10.1111/j.2044-8341. 1998.tb01366.x.
- Pauli BD, Reid RL, Munt PW, Wigle RD, Forkert L. Influence of the menstrual cycle on airway function in asthmatic and normal subjects. Am Rev Respir Dis 140: 358–362, 1989. doi:10.1164/ajrccm/ 140.2.358.
- Calcaterra V, Nappi RE, Farolfi A, Tiranini L, Rossi V, Regalbuto C, Zuccotti G. Perimenstrual asthma in adolescents: a shared condition in pediatric and gynecological endocrinology. Children (Basel) 9: 233, 2022. doi:10.3390/children9020233.
- Graziottin A, Serafini A. Perimenstrual asthma: from pathophysiology to treatment strategies. Multidiscip Respir Med 11: 30, 2016. doi:10.1186/s40248-016-0065-0.
- 187. Rao CK, Moore CG, Bleecker E, Busse WW, Calhoun W, Castro M, Chung KF, Erzurum SC, Israel E, Curran-Everett D, Wenzel SE. Characteristics of perimenstrual asthma and its relation to asthma severity and control: data from the Severe Asthma Research Program. Chest 143: 984–992, 2013. doi:10.1378/chest.12-0973.
- 188. Skobeloff EM, Spivey WH, Silverman R, Eskin BA, Harchelroad F, Alessi TV. The effect of the menstrual cycle on asthma presentations in the emergency department. Arch Intern Med 156: 1837– 1840, 1996.
- 189. Farha S, Asosingh K, Laskowski D, Hammel J, Dweik RA, Wiedemann HP, Erzurum SC. Effects of the menstrual cycle on lung function variables in women with asthma. Am J Respir Crit Care Med 180: 304–310, 2009. doi:10.1164/rccm.200904-0497OC.
- Kharitonov SA, Logan-Sinclair RB, Busset CM, Shinebourne EA. Peak expiratory nitric oxide differences in men and women: relation to the menstrual cycle. Br Heart J 72: 243–245, 1994. doi:10.1136/ hrt.72.3.243.
- Tam A, Morrish D, Wadsworth S, Dorscheid D, Man SF, Sin DD. The role of female hormones on lung function in chronic lung diseases.
 BMC Womens Health 11: 24, 2011. doi:10.1186/1472-6874-11-24.
- LoMauro A, Aliverti A. Respiratory physiology of pregnancy: physiology masterclass. Breathe (Sheff) 11: 297–301, 2015. doi:10.1183/20734735.008615.
- 193. Bokern MP, Robijn AL, Jensen ME, Barker D, Callaway L, Clifton V, Wark P, Giles W, Mattes J, Peek M, Attia J, Seeho S, Abbott A, Gibson PG, Murphy VE. Factors associated with asthma exacerbations during pregnancy. J Allergy Clin Immunol Pract 9: 4343–4352.e4, 2021. doi:10.1016/j.jaip.2021.07.055.
- 194. Wang H, Li N, Huang H. Asthma in pregnancy: pathophysiology, diagnosis, whole-course management, and medication safety. Can Respir J 2020: 9046842, 2020. doi:10.1155/2020/9046842.
- Murphy VE, Schatz M. Asthma in pregnancy: a hit for two. Eur Respir Rev 23: 64–68, 2014. doi:10.1183/09059180.00008313.
- 196. Mendola P, Männistö TI, Leishear K, Reddy UM, Chen Z, Laughon SK. Neonatal health of infants born to mothers with asthma. J Allergy Clin Immunol 133: 85–90.e4, 2014. doi:10.1016/j.jaci.2013.06.012.
- 197. Willeboordse M, van de Kant KD, van der Velden CA, van Schayck CP, Dompeling E. Associations between asthma, overweight and physical activity in children: a cross-sectional study. BMC Public Health 16: 919, 2016. doi:10.1186/s12889-016-3600-1.

- 198. Hossny E, Adachi Y, Anastasiou E, Badellino H, Custovic A, El-Owaidy R, El-Sayed ZA, Filipovic I, Gomez RM, Kalayci Ö, Le Souëf P, Miligkos M, Morais-Almeida M, Nieto A, Phipatanakul W, Shousha G, Teijeiro A, Wang JY, Wong GW, Xepapadaki P, Yong SB, Papadopoulos NG. Pediatric asthma comorbidities: global impact and unmet needs. World Allergy Organ J 17: 100909, 2024. doi:10. 1016/j.waojou.2024.100909.
- Wong M, Forno E, Celedón JC. Asthma interactions between obesity and other risk factors. Ann Allergy Asthma Immunol 129: 301–306, 2022. doi:10.1016/j.anai.2022.04.029.
- Murray CS, Canoy D, Buchan I, Woodcock A, Simpson A, Custovic A. Body mass index in young children and allergic disease: gender differences in a longitudinal study. Clin Exp Allergy 41: 78–85, 2011. doi:10.1111/j.1365-2222.2010.03598.x.
- Ho WC, Lin YS, Caffrey JL, Lin MH, Hsu HT, Myers L, Chen PC, Lin RS. Higher body mass index may induce asthma among adolescents with pre-asthmatic symptoms: a prospective cohort study.
 BMC Public Health 11: 542, 2011. doi:10.1186/1471-2458-11-542.
- Castro-Rodríguez JA, Holberg CJ, Morgan WJ, Wright AL, Martinez FD. Increased incidence of asthmalike symptoms in girls who become overweight or obese during the school years. Am J Respir Crit Care Med 163: 1344–1349, 2001. doi:10.1164/ajrccm.163.6. 2006140.
- Quek YW, Sun HL, Ng YY, Lee HS, Yang SF, Ku MS, Lu KH, Sheu JN, Lue KH. Associations of serum leptin with atopic asthma and allergic rhinitis in children. Am J Rhinol Allergy 24: 354–358, 2010. doi:10.2500/ajra.2010.24.3483.
- Chen YC, Dong GH, Lin KC, Lee YL. Gender difference of childhood overweight and obesity in predicting the risk of incident asthma: a systematic review and meta-analysis. Obes Rev 14: 222–231, 2013. doi:10.1111/j.1467-789X.2012.01055.x.
- Lang JE, Holbrook JT, Wise RA, Dixon AE, Teague WG, Wei CY, Irvin CG, Shade D, Lima JJ, American Lung Association-Asthma Clinical Research Centers. Obesity in children with poorly controlled asthma: sex differences. Pediatr Pulmonol 48: 847–856, 2013. doi:10.1002/ppul.22707.
- 206. Lang JE, Hossain J, Dixon AE, Shade D, Wise RA, Peters SP, Lima JJ, Centers AA, American Lung Association-Asthma Clinical Research Centers. Does age impact the obese asthma phenotype? Longitudinal asthma control, airway function, and airflow perception among mild persistent asthmatics. Chest 140: 1524–1533, 2011. doi:10.1378/chest.11-0675.
- Hsu J, Chen J, Mirabelli MC. Asthma morbidity, comorbidities, and modifiable factors among older adults. J Allergy Clin Immunol Pract 6: 236–243.e7, 2018. doi:10.1016/j.jaip.2017.06.007.
- Miethe S, Guarino M, Alhamdan F, Simon HU, Renz H, Dufour JF, Potaczek DP, Garn H. Effects of obesity on asthma: immunometabolic links. Pol Arch Intern Med 128: 469–477, 2018.
- Wang L, Wang K, Gao X, Paul TK, Cai J, Wang Y. Sex difference in the association between obesity and asthma in U.S. adults: findings from a national study. Respir Med 109: 955–962, 2015. doi:10.1016/ j.rmed.2015.06.001.
- Tantisira KG. In asthma, the apple falls faster than the pear. J Allergy Clin Immunol 123: 1075–1076, 2009. doi:10.1016/j.jaci. 2009.03.037.
- 211. Tantisira KG, Litonjua AA, Weiss ST, Fuhlbrigge AL, Childhood Asthma Management Program Research Group. Association of body mass with pulmonary function in the Childhood Asthma

- Management Program (CAMP). **Thorax** 58: 1036–1041, 2003. doi:10.1136/thorax.58.12.1036.
- 212. Teague WG, Phillips BR, Fahy JV, Wenzel SE, Fitzpatrick AM, Moore WC, et al. Baseline features of the Severe Asthma Research Program (SARP III) cohort: differences with age. J Allergy Clin Immunol Pract 6: 545–554.e4, 2018. doi:10.1016/j.jaip.2017.05.032.
- 213. Jarjour NN, Erzurum SC, Bleecker ER, Calhoun WJ, Castro M, Comhair SA, Chung KF, Curran-Everett D, Dweik RA, Fain SB, Fitzpatrick AM, Gaston BM, Israel E, Hastie A, Hoffman EA, Holguin F, Levy BD, Meyers DA, Moore WC, Peters SP, Sorkness RL, Teague WG, Wenzel SE, Busse WW, NHLBI Severe Asthma Research Program (SARP). Severe asthma: lessons learned from the National Heart, Lung, and Blood Institute Severe Asthma Research Program. Am J Respir Crit Care Med 185: 356–362, 2012. doi:10.1164/rccm.201107-1317PP.
- 214. Tashiro H, Shore SA. Obesity and severe asthma. **Allergol Int** 68: 135–142, 2019. doi:10.1016/j.alit.2018.10.004.
- Beauruelle C, Guilloux CA, Lamoureux C, Héry-Arnaud G. The human microbiome, an emerging key-player in the sex gap in respiratory diseases. Front Med (Lausanne) 8: 600879, 2021. doi:10. 3389/fmed.2021.600879.
- Chunxi L, Haiyue L, Yanxia L, Jianbing P, Jin S. The gut microbiota and respiratory diseases: new evidence. J Immunol Res 2020: 2340670, 2020. doi:10.1155/2020/2340670.
- Frati F, Salvatori C, Incorvaia C, Bellucci A, Di Cara G, Marcucci F, Esposito S. The role of the microbiome in asthma: the gut lung axis.
 Int J Mol Sci 20: 123, 2018. doi:10.3390/ijms20010123.
- Loverdos K, Bellos G, Kokolatou L, Vasileiadis I, Giamarellos E, Pecchiari M, Koulouris N, Koutsoukou A, Rovina N. Lung microbiome in asthma: current perspectives. J Clin Med 8: 1967, 2019. doi:10.3390/jcm8111967.
- 219. Marsland BJ, Trompette A, Gollwitzer ES. The gut-lung axis in respiratory disease. **Ann Am Thorac Soc** 12, *Suppl* 3: S150–S156, 2015. doi:10.1513/AnnalsATS.201503-133AW.
- 220. Chen R, Wang L, Koch T, Curtis V, Yin-DeClue H, Handley SA, Shan L, Holtzman MJ, Castro M, Wang L. Sex effects in the association between airway microbiome and asthma. Ann Allergy Asthma Immunol 125: 652–657.e3, 2020. doi:10.1016/j.anai.2020.09.007.
- Chiarella SE, Cuervo-Pardo L, Coden ME, Jeong BM, Doan TC, Connelly AR, Rodriguez RI, Queener AM, Berdnikovs S. Sex differences in a murine model of asthma are time and tissue compartment dependent. PLoS One 18: e0271281, 2023. doi:10.1371/journal.pone.0271281.
- 222. Mostafa DH, Hemshekhar M, Piyadasa H, Altieri A, Halayko AJ, Pascoe CD, Mookherjee N. Characterization of sex-related differences in allergen house dust mite-challenged airway inflammation, in two different strains of mice. Sci Rep 12: 20837, 2022. doi:10.1038/s41598-022-25327-7.
- Chang HY, Mitzner W. Sex differences in mouse models of asthma.
 Can J Physiol Pharmacol 85: 1226–1235, 2007. doi:10.1139/Y07-116.
- 224. Gill R, Rojas-Ruiz A, Boucher M, Henry C, Bossé Y. More airway smooth muscle in males versus females in a mouse model of asthma: a blessing in disguise? Exp Physiol 108: 1080–1091, 2023. doi:10.1113/EP091236.
- 225. Fuseini H, Yung JA, Cephus JY, Zhang J, Goleniewska K, Polosukhin VV, Peebles RS, Jr. Newcomb DC. Testosterone decreases house dust mite–induced type 2 and IL-17A–mediated

- airway inflammation. **J Immunol** 201: 1843–1854, 2018. doi:10.4049/jimmunol.1800293.
- 226. Cephus JY, Stier MT, Fuseini H, Yung JA, Toki S, Bloodworth MH, Zhou W, Goleniewska K, Zhang J, Garon SL, Hamilton RG, Poloshukin VV, Boyd KL, Peebles RS, Newcomb DC. Testosterone attenuates group 2 innate lymphoid cell-mediated airway inflammation. Cell Rep 21: 2487–2499, 2017. doi:10.1016/j.celrep.2017.10.110.
- Kalidhindi RS, Ambhore NS, Balraj P, Schmidt T, Khan MN, Sathish V. Androgen receptor activation alleviates airway hyperresponsiveness, inflammation, and remodeling in a murine model of asthma.
 Am J Physiol Lung Cell Mol Physiol 320: L803–L818, 2021. doi:10. 1152/ajplung.00441.2020.
- 228. McManus JM, Gaston B, Zein J, Sharifi N. Association between asthma and reduced androgen receptor expression in airways. J Endocr Soc 6: bvac047, 2022. doi:10.1210/jendso/bvac047.
- Becerra-Díaz M, Lerner AD, Yu DH, Thiboutot JP, Liu MC, Yarmus LB, Bose S, Heller NM. Sex differences in M2 polarization, chemokine and IL-4 receptors in monocytes and macrophages from asthmatics. Cell Immunol 360: 104252, 2021. doi:10.1016/j.cellimm. 2020.104252.
- Blanquart E, Laffont S, Guéry JC. Sex hormone regulation of innate lymphoid cells. **Biomed J** 44: 144–156, 2021. doi:10.1016/j.bj.2020.11. 007.
- Souza MP, Lima F, Muniz IP, Pereira ÍS, Sousa LR, Galantini MP, Santos DP, Figueiredo TB, Silva R. Ovariectomy modifies TH2, and TH17 balance in BALB/C allergic mice. Iran J Allergy Asthma Immunol 16: 525–536, 2017.
- Keselman A, Fang X, White PB, Heller NM. Estrogen signaling contributes to sex differences in macrophage polarization during asthma. J Immunol 199: 1573–1583, 2017. doi:10.4049/jimmunol. 1601975.
- Keselman A, Heller N. Estrogen signaling modulates allergic inflammation and contributes to sex differences in asthma. Front Immunol 6: 568, 2015. doi:10.3389/fimmu.2015.00568.
- 234. De Vries GJ, Rissman EF, Simerly RB, Yang LY, Scordalakes EM, Auger CJ, Swain A, Lovell-Badge R, Burgoyne PS, Arnold AP. A model system for study of sex chromosome effects on sexually dimorphic neural and behavioral traits. J Neurosci 22: 9005–9014, 2002. doi:10.1523/JNEUROSCI.22-20-09005.2002.
- 235. Commodore S, Ekpruke CD, Rousselle D, Alford R, Babayev M, Sharma S, Buechlein A, Rusch DB, Silveyra P. Lung proinflammatory microRNA and cytokine expression in a mouse model of allergic inflammation: role of sex chromosome complement and gonadal hormones. Physiol Genomics 56: 179–193, 2024. doi:10.1152/physiolgenomics.00049.2023.
- 236. Ekpruke CD, Alford R, Rousselle D, Babayev M, Sharma S, Commodore S, Buechlein A, Rusch DB, Silveyra P. Transcriptomics analysis of allergen-induced inflammatory gene expression in the Four-Core Genotype mouse model. Physiol Genomics 56: 235–245, 2024. doi:10.1152/physiolgenomics.00112.2023.
- Ekpruke CD, Alford R, Parker E, Silveyra P. Gonadal sex and chromosome complement influence the gut microbiome in a mouse model of allergic airway inflammation. Physiol Genomics 56: 417–425, 2024. doi:10.1152/physiolgenomics.00003.2024.
- Chapman KR, Tashkin DP, Pye DJ. Gender bias in the diagnosis of COPD. Chest 119: 1691–1695. 2001. doi:10.1378/chest.119.6.1691.

- 239. Varkey AB. Chronic obstructive pulmonary disease in women: exploring gender differences. Curr Opin Pulm Med 10: 98–103, 2004. doi:10.1097/00063198-200403000-00003.
- American Lung Association. Taking Her Breath Away: the Rise of COPD in Women. American Lung Association, 2013.
- Aryal S, Diaz-Guzman E, Mannino DM. COPD and gender differences: an update. Transl Res 162: 208–218, 2013. doi:10.1016/j.trsl. 2013.04.003.
- Jenkins CR, Chapman KR, Donohue JF, Roche N, Tsiligianni I, Han MK. Improving the management of COPD in women. Chest 151: 686–696, 2017. doi:10.1016/j.chest.2016.10.031.
- 243. Shim YM, MacLeod JL. Sex matters: a deep dive into sex differences in COPD. Am J Respir Cell Mol Biol 72: 10–11, 2024. doi:10. 1165/rcmb.2024-0344ED.
- 244. Wang C, Xu J, Yang L, Xu Y, Zhang X, Bai C, et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-sectional study. Lancet 391: 1706–1717, 2018. doi:10.1016/S0140-6736(18)30841-9.
- 245. Zhu B, Wang Y, Ming J, Chen W, Zhang L. Disease burden of COPD in China: a systematic review. Int J Chron Obstruct Pulmon Dis 13: 1353–1364, 2018. doi:10.2147/COPD.S161555.
- 246. Tsiligianni I, Rodriguez MR, Lisspers K, LeeTan T, Infantino A. Call to action: improving primary care for women with COPD. NPJ Prim Care Respir Med 27: 11, 2017. doi:10.1038/s41533-017-0013-2.
- 247. Soriano JB, Alfageme I, Miravitlles M, de Lucas P, Soler-Cataluña JJ, García-Río F, Casanova C, Rodríguez González-Moro JM, Cosío BG, Sánchez G, Ancochea J. Prevalence and determinants of COPD in Spain: EPISCAN II. Arch Bronconeumol 57: 61–69, 2021. doi:10. 1016/j.arbres.2020.07.024.
- 248. Martínez-Pérez I, González-Iglesias V, Suárez VR, Fernández-Somoano A. Spatial distribution of unscheduled hospital admissions for chronic obstructive pulmonary disease in the central area of Asturias, Spain. BMC Pulm Med 23: 101, 2023. doi:10.1186/s12890-023-02395-7.
- 249. Bolego C, Poli A, Paoletti R. Smoking and gender. **Cardiovasc Res** 53: 568–576, 2002. doi:10.1016/s0008-6363(01)00520-x.
- Kreuzer M, Gerken M, Heinrich J, Kreienbrock L, Wichmann HE. Hormonal factors and risk of lung cancer among women? Int J Epidemiol 32: 263–271, 2003. doi:10.1093/ije/dyg064.
- 251. Ben-Zaken Cohen S, Paré PD, Man SF, Sin DD. The growing burden of chronic obstructive pulmonary disease and lung cancer in women: examining sex differences in cigarette smoke metabolism.
 Am J Respir Crit Care Med 176: 113–120, 2007. doi:10.1164/rccm. 200611-1655PP.
- 252. Jindal SK. Chronic obstructive pulmonary disease in non-smokers -Is it a different phenotype? Indian J Med Res 147: 337–339, 2018. doi:10.4103/ijmr.IJMR_10_18.
- 253. Jindal SK, Aggarwal AN, Jindal A, Talwar D, Dhar R, Singh N, Singh V, Krishnaswamy UM, Chetambath R, Nath A, Bhattacharya P, Chaudhary D, Gupta PR, Gupta ML, Koul P, Swarankar R, Kant S, Ghoshal A. COPD exacerbation rates are higher in non-smoker patients in India. Int J Tuberc Lung Dis 24: 1272–1278, 2020. doi:10.5588/ijtld.20.0253.
- Milne KM, Mitchell RA, Ferguson ON, Hind AS, Guenette JA. Sexdifferences in COPD: from biological mechanisms to therapeutic considerations. Front Med (Lausanne) 11: 1289259, 2024. doi:10. 3389/fmed.2024.1289259.

- 255. Perez TA, Castillo EG, Ancochea J, Pastor Sanz MT, Almagro P, Martínez-Camblor P, et al. Sex differences between women and men with COPD: a new analysis of the 3CIA study. Respir Med 171: 106105, 2020. doi:10.1016/j.rmed.2020.106105.
- 256. Han MK, Postma D, Mannino DM, Giardino ND, Buist S, Curtis JL, Martinez FJ. Gender and chronic obstructive pulmonary disease: why it matters. Am J Respir Crit Care Med 176: 1179–1184, 2007. doi:10.1164/rccm.200704-553CC.
- 257. Martinez FJ, Curtis JL, Sciurba F, Mumford J, Giardino ND, Weinmann G, Kazerooni E, Murray S, Criner GJ, Sin DD, Hogg J, Ries AL, Han M, Fishman AP, Make B, Hoffman EA, Mohsenifar Z, Wise R; National Emphysema Treatment Trial Research Group. Sex differences in severe pulmonary emphysema. Am J Respir Crit Care Med 176: 243–252, 2007. doi:10.1164/rccm.200606-8280C.
- 258. Sørheim IC, Johannessen A, Gulsvik A, Bakke PS, Silverman EK, DeMeo DL. Gender differences in COPD: are women more susceptible to smoking effects than men? Thorax 65: 480–485, 2010. doi:10.1136/thx.2009.122002.
- Jenkins C. Differences between men and women with chronic obstructive pulmonary disease. Clin Chest Med 42: 443–456, 2021. doi:10.1016/j.ccm.2021.06.001.
- Buttery SC, Zysman M, Vikjord SA, Hopkinson NS, Jenkins C, Vanfleteren LE. Contemporary perspectives in COPD: patient burden, the role of gender and trajectories of multimorbidity. Respirology 26: 419–441, 2021. doi:10.1111/resp.14032.
- LoMauro A, Aliverti A. Sex and gender in respiratory physiology.
 Eur Respir Rev 30: 210038, 2021. doi:10.1183/16000617.0038-2021.
- Sansores RH, Ramírez-Venegas A. COPD in women: susceptibility or vulnerability? Eur Respir J 47: 19–22, 2016. doi:10.1183/ 13993003.01781-2015.
- Criner RN, Han MK. COPD care in the 21st century: a public health priority. Respir Care 63: 591–600, 2018. doi:10.4187/respcare. 06276.
- 264. Adama S, Serge MA, Nicolas M, Catherine B. Chronic obstructive pulmonary disease associated with biomass fuel use in women: a systematic review and meta-analysis. BMJ Open Respir Res 5: e000246, 2018. doi:10.1136/bmjresp-2017-000246.
- 265. Haghani A, Arpawong TE, Kim JK, Lewinger JP, Finch CE, Crimmins E. Female vulnerability to the effects of smoking on health outcomes in older people. PLoS One 15: e0234015, 2020. doi:10.1371/journal.pone.0234015.
- 266. Gut-Gobert C, Cavaillès A, Dixmier A, Guillot S, Jouneau S, Leroyer C, Marchand-Adam S, Marquette D, Meurice JC, Desvigne N, Morel H, Person-Tacnet C, Raherison C. Women and COPD: do we need more evidence? Eur Respir Rev 28: 180055, 2019. doi:10.1183/16000617.0055-2018.
- Barnes PJ. Sex differences in chronic obstructive pulmonary disease mechanisms. Am J Respir Crit Care Med 193: 813–814, 2016. doi:10.1164/rccm.201512-2379ED.
- Du D, Ran B, Xu D, Liu L, Hu X, Zeng T, Shen Y, Luo F. Sex hormones and chronic obstructive pulmonary disease: a cross-sectional study and Mendelian randomization analysis. Int J Chron Obstruct Pulmon Dis 19: 1649–1660, 2024. doi:10.2147/COPD. S463849.
- Schiffers C, Reynaert NL, Wouters EF, van der Vliet A. Redox dysregulation in aging and COPD: role of NOX enzymes and implications for antioxidant strategies. Antioxidants (Basel) 10: 1799, 2021. doi:10.3390/antiox10111799.

- 270. Lopes-Ramos CM, Shutta KH, Ryu MH, Huang Y, Saha E, Ziniti J, Chase R, Hobbs BD, Yun JH, Castaldi P, Hersh CP, Glass K, Silverman EK, Quackenbush J, DeMeo DL. Sex-biased regulation of extracellular matrix genes in COPD. Am J Respir Cell Mol Biol 72: 72–81, 2024. doi:10.1165/rcmb.2024-0226OC.
- Odimba U, Senthilselvan A, Farrell J, Gao Z. Sex-specific genetic determinants of asthma-COPD phenotype and COPD in middleaged and older Canadian adults: an analysis of CLSA data. COPD 20: 233–247, 2023. doi:10.1080/15412555.2023.2229906.
- 272. Tam A, Bates JH, Churg A, Wright JL, Man SF, Sin DD. Sex-related differences in pulmonary function following 6 months of cigarette exposure: implications for sexual dimorphism in mild COPD. PLoS One 11: e0164835, 2016. doi:10.1371/journal.pone.0164835.
- Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025. CA Cancer J Clin 75: 10–45, 2025. doi:10.3322/caac. 21871.
- 274. Stapelfeld C, Dammann C, Maser E. Sex-specificity in lung cancer risk. Int J Cancer 146: 2376–2382, 2020. doi:10.1002/ijc.32716.
- 275. Costa AR, Lança de Oliveira M, Cruz I, Gonçalves I, Cascalheira JF, Santos CR. The sex bias of cancer. **Trends Endocrinol Metab** 31: 785–799, 2020. doi:10.1016/j.tem.2020.07.002.
- 276. GBD 2021 Causes of Death Collaborators. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 403: 2100–2132, 2024. doi:10.1016/S0140-6736(24)00367-2.
- Fuentes N, Silva Rodriguez M, Silveyra P. Role of sex hormones in lung cancer. Exp Biol Med (Maywood) 246: 2098–2110, 2021. doi:10.1177/15353702211019697.
- 278. Akhtar N, Bansal JG. Risk factors of lung cancer in nonsmoker. Curr Probl Cancer 41: 328–339, 2017. doi:10.1016/j.currproblcancer. 2017.07.002.
- Hsu LH, Chu NM, Kao SH. Estrogen, estrogen receptor and lung cancer. Int J Mol Sci 18: 1713, 2017. doi:10.3390/ijms18081713.
- Kiyohara C, Ohno Y. Sex differences in lung cancer susceptibility: a review. Gend Med 7: 381–401, 2010. doi:10.1016/j.genm.2010.10. 002.
- Siegfried JM, Hershberger PA, Stabile LP. Estrogen receptor signaling in lung cancer. Semin Oncol 36: 524–531, 2009. doi:10.1053/j. seminoncol.2009.10.004.
- 282. Musial C, Zaucha R, Kuban-Jankowska A, Konieczna L, Belka M, Marino Gammazza A, Baczek T, Cappello F, Wozniak M, Gorska-Ponikowska M. Plausible role of estrogens in pathogenesis, progression and therapy of lung cancer. Int J Environ Res Public Health 18: 648, 2021. doi:10.3390/ijerph18020648.
- Słowikowski BK, Lianeri M, Jagodziński PP. Exploring estrogenic activity in lung cancer. Mol Biol Rep 44: 35–50, 2017. doi:10.1007/ s11033-016-4086-8.
- Stabile LP, Dacic S, Land SR, Lenzner DE, Dhir R, Acquafondata M, Landreneau RJ, Grandis JR, Siegfried JM. Combined analysis of estrogen receptor beta-1 and progesterone receptor expression identifies lung cancer patients with poor outcome. Clin Cancer Res 17: 154–164, 2011. doi:10.1158/1078-0432.CCR-10-0992.
- Rodriguez-Lara V, Peña-Mirabal E, Baez-Saldaña R, Esparza-Silva AL, García-Zepeda E, Cerbon Cervantes MA, Diaz D, Fortoul TI. Estrogen receptor beta and CXCR4/CXCL12 expression: differences by sex

- and hormonal status in lung adenocarcinoma. **Arch Med Res** 45: 158–169, 2014. doi:10.1016/j.arcmed.2014.01.001.
- 286. Pietras RJ, Márquez DC, Chen HW, Tsai E, Weinberg O, Fishbein M. Estrogen and growth factor receptor interactions in human breast and non-small cell lung cancer cells. Steroids 70: 372–381, 2005. doi:10.1016/j.steroids.2005.02.017.
- 287. The Coronary Drug Project Research Group. The Coronary Drug Project. Findings leading to discontinuation of the 2.5-mg day estrogen group. **JAMA** 226: 652–657, 1973. doi:10.1001/jama.1973. 03230060030009.
- 288. Yager JD, Davidson NE. Estrogen carcinogenesis in breast cancer.
 N Engl J Med 354: 270–282, 2006. doi:10.1056/NEJMra050776.
- 289. Stabile LP, Davis AL, Gubish CT, Hopkins TM, Luketich JD, Christie N, Finkelstein S, Siegfried JM. Human non-small cell lung tumors and cells derived from normal lung express both estrogen receptor alpha and beta and show biological responses to estrogen. Cancer Res 62: 2141–2150, 2002.
- Rodriguez-Lara V, Hernandez-Martinez JM, Arrieta O. Influence of estrogen in non-small cell lung cancer and its clinical implications. J Thorac Dis 10: 482–497, 2018. doi:10.21037/jtd.2017.12.61.
- Márquez-Garbán DC, Chen HW, Goodglick L, Fishbein MC, Pietras RJ. Targeting aromatase and estrogen signaling in human non-small cell lung cancer. Ann NY Acad Sci 1155: 194–205, 2009. doi:10.1111/j.1749-6632.2009.04116.x.
- Chu SC, Hsieh CJ, Wang TF, Hong MK, Chu TY. Antiestrogen use in breast cancer patients reduces the risk of subsequent lung cancer: a population-based study. Cancer Epidemiol 48: 22–28, 2017. doi:10.1016/j.canep.2017.02.010.
- 293. Ishibashi H, Suzuki T, Suzuki S, Niikawa H, Lu L, Miki Y, Moriya T, Hayashi S, Handa M, Kondo T, Sasano H. Progesterone receptor in non-small cell lung cancer—a potent prognostic factor and possible target for endocrine therapy. Cancer Res 65: 6450–6458, 2005. doi:10.1158/0008-5472.CAN-04-3087.
- 294. Chan YX, Alfonso H, Chubb SA, Handelsman DJ, Fegan PG, Hankey GJ, Golledge J, Flicker L, Yeap BB. Higher dihydrotestosterone is associated with the incidence of lung cancer in older men. Horm Cancer 8: 119–126, 2017. doi:10.1007/s12672-017-0287-4.
- 295. Hyde Z, Flicker L, McCaul KA, Almeida OP, Hankey GJ, Chubb SA, Yeap BB. Associations between testosterone levels and incident prostate, lung, and colorectal cancer. A population-based study. Cancer Epidemiol Biomarkers Prev 21: 1319–1329, 2012. doi:10. 1158/1055-9965.EPI-12-0129.
- 296. Oh MS, Anker JF, Chae YK. High gene expression of estrogen and progesterone receptors is associated with decreased T cell infiltration in patients with NSCLC. Cancer Treat Res Commun 27: 100317, 2021. doi:10.1016/j.ctarc.2021.100317.
- 297. Asavasupreechar T, Chan MS, Saito R, Miki Y, Boonyaratanakornkit V, Sasano H. Sex steroid metabolism and actions in non-small cell lung carcinoma. J Steroid Biochem Mol Biol 193: 105440, 2019. doi:10.1016/j.jsbmb.2019.105440.
- 298. Cheng TY, Darke AK, Redman MW, Zirpoli GR, Davis W, Payne Ondracek R, Bshara W, Omilian AR, Kratzke R, Reid ME, Molina JR, Kolesar JM, Chen Y, MacRae RM, Moon J, Mack P, Gandara DR, Kelly K, Santella RM, Albain KS, Ambrosone CB. Smoking, sex, and non-small cell lung cancer: steroid hormone receptors in tumor tissue (S0424). J Natl Cancer Inst 110: 734–742, 2018. doi:10.1093/jnci/djx260.

- Roden AC, Moser MT, Tri SD, Mercader M, Kuntz SM, Dong H, Hurwitz AA, McKean DJ, Celis E, Leibovich BC, Allison JP, Kwon ED. Augmentation of T cell levels and responses induced by androgen deprivation. J Immunol 173: 6098–6108, 2004. doi:10.4049/ jimmunol.173.10.6098.
- Rettew JA, Huet-Hudson YM, Marriott I. Testosterone reduces macrophage expression in the mouse of toll-like receptor 4, a trigger for inflammation and innate immunity. Biol Reprod 78: 432–437, 2008. doi:10.1095/biolreprod.107.063545.
- Hammoud Z, Tan B, Badve S, Bigsby RM. Estrogen promotes tumor progression in a genetically defined mouse model of lung adenocarcinoma. Endocr Relat Cancer 15: 475–483, 2008. doi:10.1677/ ERC-08-0002.
- 302. Berardi R, Morgese F, Santinelli A, Onofri A, Biscotti T, Brunelli A, Caramanti M, Savini A, De Lisa M, Ballatore Z, Pompili C, Salati M, Mazzanti P, Torniai M, Cascinu S. Hormonal receptors in lung adenocarcinoma: expression and difference in outcome by sex. Oncotarget 7: 82648–82657, 2016. doi:10.18632/oncotarget. 12244.
- 303. Gangwar SK, Kumar A, Yap KC, Jose S, Parama D, Sethi G, Kumar AP, Kunnumakkara AB. Targeting nuclear receptors in lung cancernovel therapeutic prospects. Pharmaceuticals (Basel) 15: 624, 2022. doi:10.3390/ph15050624.
- Song HK, Kim SY. The role of sex-specific long non-coding RNAs in cancer prevention and therapy. J Cancer Prev 26: 98–109, 2021. doi:10.15430/JCP.2021.26.2.98.
- 305. Yim SH, Chung YJ. Molecular epidemiology of female lung cancer. Cancers (Basel) 3: 1861–1876, 2011. doi:10.3390/cancers3021861.
- Kligerman S, White C. Epidemiology of lung cancer in women: risk factors, survival, and screening. AJR Am J Roentgenol 196: 287– 295, 2011. doi:10.2214/AJR.10.5412.
- Berardi R, Verdecchia L, Paolo MD, Giampieri R, Scartozzi M, Pierantoni C, Bianconi M, Mazzanti P, Cascinu S. Women and lung cancer: clinical and molecular profiling as a determinate for treatment decisions: a literature review. Crit Rev Oncol Hematol 69: 223–236, 2009. doi:10.1016/j.critrevonc.2008.06.008.
- Gaur P, Bhattacharya S, Kant S, Kushwaha RA, Singh G, Pandey S. EGFR mutation detection and its association with clinicopathological characters of lung cancer patients. World J Oncol 9: 151–155, 2018. doi:10.14740/wjon1167.
- 309. Hsu KH, Ho CC, Hsia TC, Tseng JS, Su KY, Wu MF, Chiu KL, Yang TY, Chen KC, Ooi H, Wu TC, Chen HJ, Chen HY, Chang CS, Hsu CP, Hsia JY, Chuang CY, Lin CH, Chen JJ, Chen KY, Liao WY, Shih JY, Yu SL, Yu CJ, Yang PC, Chang GC. Identification of five driver gene mutations in patients with treatment-naïve lung adenocarcinoma in Taiwan. PLoS One 10: e0120852, 2015. doi:10.1371/journal.pone.0120852.
- 310. Ha SY, Choi SJ, Cho JH, Choi HJ, Lee J, Jung K, Irwin D, Liu X, Lira ME, Mao M, Kim HK, Choi YS, Shim YM, Park WY, Choi YL, Kim J. Lung cancer in never-smoker Asian females is driven by oncogenic mutations, most often involving EGFR. Oncotarget 6: 5465–5474, 2015. doi:10.18632/oncotarget.2925.
- 311. Tfayli A, Rafei H, Mina A, Khalil M, Fakhreddin N, Mahfouz R, Hamouri S, Farhat F, Salem Z, Dbouk H, Rabee H, Saghir N, Shamseddine A, Makarem J, Bitar N, Mougharbil A, Assi H, Temraz S, Mukherji D, Matalka I, Zaatari G. Prevalence of EGFR and ALK mutations in lung adenocarcinomas in the levant area a prospective analysis. Asian Pac J Cancer Prev 18: 107–114, 2017. doi:10. 22034/APJCP.2017.18.1.107.

- 312. Liao BC, Chiang NJ, Chang GC, Su WC, Luo YH, Chong IW, Yang TY, Lai CL, Hsia TC, Ho CL, Lee KY, Hsiao CF, Ku FC, Fang WT, Yang JC. Registry of genetic alterations of Taiwan non–small cell lung cancer by comprehensive next-generation sequencing: a real-world cohort study-Taiwan Cooperative Oncology Group T1521.

 JCO Glob Oncol 10: e2400125, 2024. doi:10.1200/GO.24.00125.
- Luo YH, Liang KH, Huang HC, Shen CI, Chiang CL, Wang ML, Chiou SH, Chen YM. State-of-the-art molecular oncology of lung cancer in Taiwan. Int J Mol Sci 23: 7037, 2022. doi:10.3390/ijms23137037.
- Mollerup S, Ryberg D, Hewer A, Phillips DH, Haugen A. Sex differences in lung CYP1A1 expression and DNA adduct levels among lung cancer patients. Cancer Res 59: 3317–3320, 1999.
- Chakraborty S, Ganti AK, Marr A, Batra SK. Lung cancer in women: role of estrogens. Expert Rev Respir Med 4: 509–518, 2010. doi:10. 1586/ers.10.50.
- Pogun S, Yararbas G. Sex differences in nicotine action. Handb Exp Pharmacol 192: 261–291, 2009. doi:10.1007/978-3-540-69248-5_10.
- Chenoweth MJ, Cox LS, Nollen NL, Ahluwalia JS, Benowitz NL, Lerman C, Knight J, Tyndale RF. Analyses of nicotine metabolism biomarker genetics stratified by sex in African and European Americans. Sci Rep 11: 19572, 2021. doi:10.1038/s41598-021-98883-z.
- 318. Uchida K, Kojima A, Morokawa N, Tanabe O, Anzai C, Kawakami M, Eto Y, Yoshimura K. Expression of progastrin-releasing peptide and gastrin-releasing peptide receptor mRNA transcripts in tumor cells of patients with small cell lung cancer. J Cancer Res Clin Oncol 128: 633–640, 2002. doi:10.1007/s00432-002-0392-8.
- Shriver SP, Bourdeau HA, Gubish CT, Tirpak DL, Davis AL, Luketich JD, Siegfried JM. Sex-specific expression of gastrin-releasing peptide receptor: relationship to smoking history and risk of lung cancer. J Natl Cancer Inst 92: 24–33, 2000. doi:10.1093/jnci/92.1.24.
- 320. Yuan Y, Liu L, Chen H, Wang Y, Xu Y, Mao H, Li J, Mills GB, Shu Y, Li L, Liang H. Comprehensive characterization of molecular differences in cancer between male and female patients. **Cancer Cell** 29: 711–722, 2016. doi:10.1016/j.ccell.2016.04.001.
- Lin CM, Davidson TM, Ancoli-Israel S. Gender differences in obstructive sleep apnea and treatment implications. Sleep Med Rev 12: 481–496, 2008. doi:10.1016/j.smrv.2007.11.003.
- 322. Perger E, Mattaliano P, Lombardi C. Menopause and sleep apnea.

 Maturitas 124: 35–38, 2019. doi:10.1016/j.maturitas.2019.02.011.
- 323. Robertson BD, Lerner BS, Collen JF, Smith PR. The effects of transgender hormone therapy on sleep and breathing: a case series. J Clin Sleep Med 15: 1529–1533, 2019. doi:10.5664/jcsm.7992.
- Behan M, Wenninger JM. Sex steroidal hormones and respiratory control. Respir Physiol Neurobiol 164: 213–221, 2008. doi:10.1016/j. resp.2008.06.006.
- 325. Liu PY, Reddy RT. Sleep, testosterone and cortisol balance, and ageing men. **Rev Endocr Metab Disord** 23: 1323–1339, 2022. doi:10.1007/s11154-022-09755-4.
- Dominelli PB, Molgat-Seon Y, Sheel AW. Sex differences in the pulmonary system influence the integrative response to exercise. Exerc Sport Sci Rev 47: 142–150, 2019. doi:10.1249/JES.0000000000000188.
- Ellis H. Man and Woman: A Study of Human Secondary Sexual Characters.
 Walter Scott, 1894.
- 328. Kotecha S. Lung growth for beginners. **Paediatr Respir Rev** 1: 308–313, 2000. doi:10.1053/prrv.2000.0069.

- 329. Warburton D, El-Hashash A, Carraro G, Tiozzo C, Sala F, Rogers O, De Langhe S, Kemp PJ, Riccardi D, Torday J, Bellusci S, Shi W, Lubkin SR, Jesudason E. Lung organogenesis. Curr Top Dev Biol 90: 73–158, 2010. doi:10.1016/S0070-2153(10)90003-3.
- 330. Silveyra P. Chapter 9: developmental lung disease. In: *Gender, Sex Hormones and Respiratory Disease: a Comprehensive Guide*, edited by Hemnes AR. Springer, 2016, p. 243.
- 331. DiFiore JW, Wilson JM. Lung development. **Semin Pediatr Surg** 3: 221–232, 1994.
- 332. Ishak N, Sozo F, Harding R, De Matteo R. Does lung development differ in male and female fetuses? **Exp Lung Res** 40: 30–39, 2014. doi:10.3109/01902148.2013.858197.
- 333. Thurlbeck WM. Lung growth and alveolar multiplication. **Pathobiol Annu** 5: 1–34, 1975.
- 334. Hoffstein V. Relationship between lung volume, maximal expiratory flow, forced expiratory volume in one second, and tracheal area in normal men and women. Am Rev Respir Dis 134: 956–961, 1986. doi:10.1164/arrd.1986.134.5.956.
- 335. Chen YC, Fan HY, Yang C, Lee YL. Early pubertal maturation and risk of childhood asthma: a Mendelian randomization and longitudinal study. Allergy 75: 892–900, 2020. doi:10.1111/all.14009.
- 336. Minelli C, van der Plaat DA, Leynaert B, Granell R, Amaral AF, Pereira M, Mahmoud O, Potts J, Sheehan NA, Bowden J, Thompson J, Jarvis D, Davey Smith G, Henderson J. Age at puberty and risk of asthma: a Mendelian randomisation study. PLoS Med 15: e1002634, 2018. doi:10.1371/journal.pmed.1002634.
- Klein SL. Sex influences immune responses to viruses, and efficacy of prophylaxis and treatments for viral diseases. Bioessays 34: 1050–1059, 2012. doi:10.1002/bies.201200099.
- Fish EN. The X-files in immunity: sex-based differences predispose immune responses. Nat Rev Immunol 8: 737–744, 2008. doi:10. 1038/nri2394.
- 339. Klein SL. The effects of hormones on sex differences in infection: from genes to behavior. **Neurosci Biobehav Rev** 24: 627–638, 2000. doi:10.1016/s0149-7634(00)00027-0.
- Brabin L. Interactions of the female hormonal environment, susceptibility to viral infections, and disease progression. AIDS Patient
 Care STDS 16: 211–221, 2002. doi:10.1089/10872910252972267.
- 341. Cunningham M, Gilkeson G. Estrogen receptors in immunity and autoimmunity. Clin Rev Allergy Immunol 40: 66–73, 2011. doi:10. 1007/s12016-010-8203-5.
- 342. Klein SL. Immune cells have sex and so should journal articles. **Endocrinology** 153: 2544–2550, 2012. doi:10.1210/en.2011-2120.
- 343. Silveyra P, Fuentes N, Rivera L. Understanding the intersection of environmental pollution, pneumonia, and inflammation: does gender play a role? In: *Contemporary Topics of Pneumonia*, edited by Chroneos Z. InTechOpen Books, 2017.
- Klein SL, Marriott I, Fish EN. Sex-based differences in immune function and responses to vaccination. Trans R Soc Trop Med Hyg 109: 9–15, 2015. doi:10.1093/trstmh/tru167.
- 345. Klein SL, Jedlicka A, Pekosz A. The Xs and Y of immune responses to viral vaccines. Lancet Infect Dis 10: 338–349, 2010. doi:10.1016/ S1473-3099(10)70049-9.
- 346. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol 16: 626–638, 2016. doi:10.1038/nri.2016.90.

SEX, HORMONES, AND LUNG HEALTH

- 347. Salem ML. Estrogen, a double-edged sword: modulation of TH1and TH2-mediated inflammations by differential regulation of TH1/ TH2 cytokine production. Curr Drug Targets Inflamm Allergy 3: 97–104, 2004. doi:10.2174/1568010043483944.
- Klein SL, Hodgson A, Robinson DP. Mechanisms of sex disparities in influenza pathogenesis. J Leukoc Biol 92: 67–73, 2012. doi:10. 1189/jlb.0811427.
- 349. Carey MA, Card JW, Voltz JW, Germolec DR, Korach KS, Zeldin DC. The impact of sex and sex hormones on lung physiology and disease: lessons from animal studies. Am J Physiol Lung Cell Mol Physiol 293: L272–L278, 2007. doi:10.1152/ajplung.00174.2007.
- Collaborators GL. Age-sex differences in the global burden of lower respiratory infections and risk factors, 1990–2019: results from the Global Burden of Disease Study 2019. Lancet Infect Dis 22: 1626– 1647, 2022. doi:10.1016/S1473-3099(22)00510-2.
- Falagas ME, Mourtzoukou EG, Vardakas KZ. Sex differences in the incidence and severity of respiratory tract infections. Respir Med 101: 1845–1863, 2007. doi:10.1016/j.rmed.2007.04.011.
- Harding AT, Heaton NS. The impact of estrogens and their receptors on immunity and inflammation during infection. Cancers (Basel) 14: 909, 2022. doi:10.3390/cancers14040909.
- 353. Bird MD, Karavitis J, Kovacs EJ. Sex differences and estrogen modulation of the cellular immune response after injury. **Cell Immunol** 252: 57–67, 2008. doi:10.1016/j.cellimm.2007.09.007.
- 354. Cervantes O, Cruz Talavera I, Every E, Coler B, Li M, Li A, Li H, Adams Waldorf K. Role of hormones in the pregnancy and sex-specific outcomes to infections with respiratory viruses. Immunol Rev 308: 123–148, 2022. doi:10.1111/imr.13078.
- 355. Finch CL, Zhang A, Kosikova M, Kawano T, Pasetti MF, Ye Z, Ascher JR, Xie H. Pregnancy level of estradiol attenuated virus-specific humoral immune response in H5N1-infected female mice despite inducing anti-inflammatory protection. Emerg Microbes Infect 8: 1146–1156, 2019. doi:10.1080/22221751.2019.1648184.
- Kadel S, Kovats S. Sex hormones regulate innate immune cells and promote sex differences in respiratory virus infection. Front Immunol 9: 1653, 2018. doi:10.3389/fimmu.2018.01653.
- 357. Macsali F, Svanes C, Sothern RB, Benediktsdottir B, Bjørge L, Dratva J, Franklin KA, Holm M, Janson C, Johannessen A, Lindberg E, Omenaas ER, Schlünssen V, Zemp E, Real FG. Menstrual cycle and respiratory symptoms in a general Nordic-Baltic population. Am J Respir Crit Care Med 187: 366–373, 2013. doi:10.1164/rccm. 201206-1112OC.
- Maudhoo A, Khalil A. Viral pulmonary infection in pregnancy including COVID-19, SARS, influenza A, and varicella. Best Pract Res Clin Obstet Gynaecol 85: 17–25, 2022. doi:10.1016/j.bpobgyn. 2022.06.006.
- Wray S, Arrowsmith S. The physiological mechanisms of the sexbased difference in outcomes of COVID19 infection. Front Physiol 12: 627260, 2021. doi:10.3389/fphys.2021.627260.
- Schurz H, Salie M, Tromp G, Hoal EG, Kinnear CJ, Möller M. The X chromosome and sex-specific effects in infectious disease susceptibility. Hum Genomics 13: 2, 2019. doi:10.1186/s40246-018-0185-z.
- Kadioglu A, Cuppone AM, Trappetti C, List T, Spreafico A, Pozzi G, Andrew PW, Oggioni MR. Sex-based differences in susceptibility to respiratory and systemic pneumococcal disease in mice. J Infect Dis 204: 1971–1979, 2011. doi:10.1093/infdis/jir657.

- Ben-Shmuel A, Sheiner E, Wainstock T, Landau D, Vaknin F, Walfisch A. The association between gender and pediatric respiratory morbidity. Pediatr Pulmonol 53: 1225–1230, 2018. doi:10.1002/ ppul.24083.
- Chamekh M, Deny M, Romano M, Lefèvre N, Corazza F, Duchateau J, Casimir G. Differential susceptibility to infectious respiratory diseases between males and females linked to sex-specific innate immune inflammatory response. Front Immunol 8: 1806, 2017. doi:10.3389/fimmu.2017.01806.
- Ingersoll MA. Sex differences shape the response to infectious diseases. PLoS Pathog 13: e1006688, 2017. doi:10.1371/journal.ppat. 1006688.
- Mahmoud O, Granell R, Tilling K, Minelli C, Garcia-Aymerich J, Holloway JW, Custovic A, Jarvis D, Sterne J, Henderson J. Association of height growth in puberty with lung function: a longitudinal study. Am J Respir Crit Care Med 198: 1539–1548, 2018. doi:10.1164/rccm.201802-0274OC.
- Nair H, Simões EA, Rudan I, Gessner BD, Azziz-Baumgartner E, Zhang JS, et al. Global and regional burden of hospital admissions for severe acute lower respiratory infections in young children in 2010: a systematic analysis. Lancet 381: 1380–1390, 2013. doi:10. 1016/S0140-6736(12)61901-1.
- Henderson J, Hilliard TN, Sherriff A, Stalker D, Al Shammari N, Thomas HM. Hospitalization for RSV bronchiolitis before 12 months of age and subsequent asthma, atopy and wheeze: a longitudinal birth cohort study. Pediatr Allergy Immunol 16: 386–392, 2005. doi:10.1111/j.1399-3038.2005.00298.x.
- Morgan R, Klein SL. The intersection of sex and gender in the treatment of influenza. Curr Opin Virol 35: 35–41, 2019. doi:10.1016/j.coviro.2019.02.009.
- Fink AL, Engle K, Ursin RL, Tang WY, Klein SL. Biological sex affects vaccine efficacy and protection against influenza in mice. Proc Natl Acad Sci USA 115: 12477–12482, 2018. doi:10.1073/pnas.1805268115.
- 370. Bongen E, Lucian H, Khatri A, Fragiadakis GK, Bjornson ZB, Nolan GP, Utz PJ, Khatri P. Sex differences in the blood transcriptome identify robust changes in immune cell proportions with aging and influenza infection. **Cell Rep** 29: 1961–1973.e4, 2019. doi:10.1016/j. celrep.2019.10.019.
- Ghosh S, Klein RS. Sex drives dimorphic immune responses to viral infections. J Immunol 198: 1782–1790, 2017. doi:10.4049/jimmunol. 1601166.
- 372. Piasecka B, Duffy D, Urrutia A, Quach H, Patin E, Posseme C, Bergstedt J, Charbit B, Rouilly V, MacPherson CR, Hasan M, Albaud B, Gentien D, Fellay J, Albert ML, Quintana-Murci L, and the Milieu Intérieur Consortium. Distinctive roles of age, sex, and genetics in shaping transcriptional variation of human immune responses to microbial challenges. Proc Natl Acad Sci USA 115: E488–E497, 2018. doi:10.1073/pnas.1714765115.
- Vom Steeg LG, Klein SL. SeXX matters in infectious disease pathogenesis. PLoS Pathog 12: e1005374, 2016. doi:10.1371/journal.ppat. 1005374.
- 374. Karlberg J, Chong DS, Lai WY. Do men have a higher case fatality rate of severe acute respiratory syndrome than women do? Am J Epidemiol 159: 229–231, 2004. doi:10.1093/aje/kwh056.
- 375. Leong HN, Earnest A, Lim HH, Chin CF, Tan C, Puhaindran ME, Tan A, Chen MI, Leo YS. SARS in Singapore–predictors of disease severity. Ann Acad Med Singap 35: 326–331, 2006. doi:10.47102/annals-acadmedsg.V35N5p326.

- 376. Alghamdi IG, Hussain II, Almalki SS, Alghamdi MS, Alghamdi MM, El-Sheemy MA. The pattern of Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive epidemiological analysis of data from the Saudi Ministry of Health. Int J Gen Med 7: 417–423, 2014. doi:10.2147/IJGM.S67061.
- Scully EP, Haverfield J, Ursin RL, Tannenbaum C, Klein SL. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat Rev Immunol 20: 442–447, 2020. doi:10. 1038/s41577-020-0348-8.
- 378. Schiffer VM, Janssen EB, van Bussel BC, Jorissen LL, Tas J, Sels JW, Bergmans DC, Dinh TH, van Kuijk SM, Hana A, Mehagnoul-Schipper J, Scheeren CI, Mesotten D, Stessel B, Marx G, Hof AW, Spaanderman ME, van Mook WN, van der Horst IC, Ghossein-Doha C. The "sex gap" in COVID-19 trials: a scoping review. EClinicalMedicine 29: 100652, 2020. doi:10.1016/j.eclinm.2020. 100652.
- Mohamed MS, Moulin TC, Schiöth HB. Sex differences in COVID-19: the role of androgens in disease severity and progression.
 Endocrine 71: 3–8, 2021. doi:10.1007/s12020-020-02536-6.
- 380. Takahashi T, Ellingson MK, Wong P, Israelow B, Lucas C, Klein J, et al. Sex differences in immune responses that underlie COVID-19 disease outcomes. **Nature** 588: 315–320, 2020. doi:10.1038/s41586-020-2700-3.
- Chanana N, Palmo T, Sharma K, Kumar R, Graham BB, Pasha Q. Sex-derived attributes contributing to SARS-CoV-2 mortality. Am J Physiol Endocrinol Metab 319: E562–E567, 2020. doi:10.1152/ajpendo.00295.2020.
- 382. Oelsner EC, Sun Y, Balte PP, Allen NB, Andrews H, Carson A, et al. Epidemiologic features of recovery from SARS-CoV-2 infection. JAMA Netw Open 7: e2417440, 2024. doi:10.1001/jamanetworkopen. 2024.17440.
- 383. Bai F, Tomasoni D, Falcinella C, Barbanotti D, Castoldi R, Mulè G, Augello M, Mondatore D, Allegrini M, Cona A, Tesoro D, Tagliaferri G, Viganò O, Suardi E, Tincati C, Beringheli T, Varisco B, Battistini CL, Piscopo K, Vegni E, Tavelli A, Terzoni S, Marchetti G, Monforte AD. Female gender is associated with long COVID syndrome: a prospective cohort study. Clin Microbiol Infect 28: 611.e9–e611.e16, 2022. doi:10.1016/j.cmi.2021.11.002.
- 384. Labrie F. Extragonadal synthesis of sex steroids: intracrinology. Ann Endocrinol (Paris) 64: 95–107, 2003.
- 385. Simpson ER. Sources of estrogen and their importance. J Steroid Biochem Mol Biol 86: 225–230, 2003. doi:10.1016/s0960-0760(03)00360-1.
- 386. Miller WL. Steroidogenesis: unanswered questions. Trends Endocrinol Metab 28: 771–793, 2017. doi:10.1016/j.tem.2017.09. 002.
- Kovats S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell Immunol 294: 63–69, 2015. doi:10.1016/j. cellimm.2015.01.018.
- 388. Becerra-Diaz M, Song M, Heller N. Androgen and androgen receptors as regulators of monocyte and macrophage biology in the healthy and diseased lung. Front Immunol 11: 1698, 2020. doi:10. 3389/fimmu.2020.01698.
- 389. Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms. Adv Protein Chem Struct Biol 116: 135–170, 2019. doi:10.1016/bs.apcsb.2019.01.001.

- Zierau O, Zenclussen AC, Jensen F. Role of female sex hormones, estradiol and progesterone, in mast cell behavior. Front Immunol 3: 169, 2012. doi:10.3389/fimmu.2012.00169.
- Straub RH. The complex role of estrogens in inflammation. Endocr Rev 28: 521–574, 2007. doi:10.1210/er.2007-0001.
- Siegfried JM, Stabile LP. Estrongenic steroid hormones in lung cancer. Semin Oncol 41: 5–16, 2014. doi:10.1053/j.seminoncol.2013.12.
 009.
- 393. Oertelt-Prigione S. Immunology and the menstrual cycle. Autoimmun Rev 11: A486-A492, 2012. doi:10.1016/j.autrev. 2011.11.023.
- 394. Zazara DE, Perani CV, Solano ME, Arck PC. Prenatal stress challenge impairs fetal lung development and asthma severity sex-specifically in mice. **J Reprod Immunol** 125: 100–105, 2018. doi:10.1016/j.jri.2017.07.001.
- 395. Bulkhi AA, Shepard KV, Casale TB, Cardet JC. Elevated testosterone is associated with decreased likelihood of current asthma regardless of sex. J Allergy Clin Immunol Pract 8: 3029–3035.e4, 2020. doi:10.1016/j.jaip.2020.05.022.
- 396. Laffont S, Blanquart E, Guéry JC. Sex differences in asthma: a key role of androgen-signaling in group 2 innate lymphoid cells. Front Immunol 8: 1069, 2017. doi:10.3389/fimmu.2017.01069.
- Choi IS, Cui Y, Koh YA, Lee HC, Cho YB, Won YH. Effects of dehydroepiandrosterone on Th2 cytokine production in peripheral blood mononuclear cells from asthmatics. Korean J Intern Med 23: 176–181, 2008. doi:10.3904/kjim.2008.23.4.176.
- 398. Pesce G, Triebner K, van der Plaat DA, Courbon D, Hustad S, Sigsgaard T, Nowak D, Heinrich J, Anto JM, Dorado-Arenas S, Martinez-Moratalla J, Gullon-Blanco JA, Sanchez-Ramos JL, Raherison C, Pin I, Demoly P, Gislason T, Torén K, Forsberg B, Lindberg E, Zemp E, Jogi R, Probst-Hensch N, Dharmage SC, Jarvis D, Garcia-Aymerich J, Marcon A, Gómez-Real F, Leynaert B. Low serum DHEA-S is associated with impaired lung function in women. EClinicalMedicine 23: 100389, 2020. doi:10.1016/j.eclinm.2020. 100389.
- 399. Ventetuolo CE, Baird GL, Barr RG, Bluemke DA, Fritz JS, Hill NS, Klinger JR, Lima JA, Ouyang P, Palevsky HI, Palmisciano AJ, Krishnan I, Pinder D, Preston IR, Roberts KE, Kawut SM. Higher estradiol and lower dehydroepiandrosterone-sulfate levels are associated with pulmonary arterial hypertension in men. Am J Respir Crit Care Med 193: 1168–1175, 2016. doi:10.1164/rccm. 201509-1785OC.
- Chan YM, Feld A, Jonsdottir-Lewis E. Effects of the timing of sexsteroid exposure in adolescence on adult health outcomes. J Clin Endocrinol Metab 104: 4578–4586, 2019. doi:10.1210/jc.2019-00569.
- 401. Fuchs O, Bahmer T, Weckmann M, Dittrich AM, Schaub B, Rösler B, Happle C, Brinkmann F, Ricklefs I, König IR, Watz H, Rabe KF, Kopp MV, Hansen G, von Mutius E, ALLIANCE Study Group as part of the German Centre for Lung Research (DZL). Correction to: The all age asthma cohort (ALLIANCE) from early beginnings to chronic disease: a longitudinal cohort study. BMC Pulm Med 18: 165, 2018. doi:10.1186/s12890-018-0717-2.
- Borkar NA, Combs CK, Sathish V. Sex steroids effects on asthma: a network perspective of immune and airway cells. Cells 11: 2238, 2022. doi:10.3390/cells11142238.
- Dharmage SC, Perret JL, Custovic A. Epidemiology of asthma in children and adults. Front Pediatr 7: 246, 2019. doi:10.3389/fped. 2019.00246

- 404. Holtrop M, Heltshe S, Shabanova V, Keller A, Schumacher L, Fernandez L, Jain R. A prospective study of the effects of sex hormones on lung function and inflammation in women with cystic fibrosis. Ann Am Thorac Soc 18: 1158–1166, 2021. doi:10.1513/ AnnalsATS.202008-1064OC.
- 405. Zeitlin PL. Cystic fibrosis and estrogens: a perfect storm. J Clin Invest 118: 3841–3844, 2008. doi:10.1172/JCl37778.
- Johannesson M, Lúdvíksdóttir D, Janson C. Lung function changes in relation to menstrual cycle in females with cystic fibrosis. Respir Med 94: 1043–1046, 2000. doi:10.1053/rmed.2000.0891.
- Salam MT, Wenten M, Gilliland FD. Endogenous and exogenous sex steroid hormones and asthma and wheeze in young women. J Allergy Clin Immunol 117: 1001–1007, 2006. doi:10.1016/j.jaci.2006. 02.004.
- 408 . Gaston B, Marozkina N, Newcomb DC, Sharifi N, Zein J. Asthma risk among individuals with androgen receptor deficiency. JAMA Pediatr 175: 743–745, 2021. doi:10.1001/jamapediatrics.2021.0281.
- 409. Marozkina N, Zein J, DeBoer MD, Logan L, Veri L, Ross K, Gaston B. Dehydroepiandrosterone supplementation may benefit women with asthma who have low androgen levels: a pilot study. Pulm Ther 5: 213–220, 2019. doi:10.1007/s41030-019-00101-9.
- 410. Wenzel SE, Robinson CB, Leonard JM, Panettieri RA. Nebulized dehydroepiandrosterone-3-sulfate improves asthma control in the moderate-to-severe asthma results of a 6-week, randomized, double-blind, placebo-controlled study. Allergy Asthma Proc 31: 461– 471, 2010. doi:10.2500/aap.2010.31.3384.
- Jeon KH, Shin DW, Han K, Kim D, Yoo JE, Jeong SM, Cho JH. Female reproductive factors and the risk of lung cancer in post-menopausal women: a nationwide cohort study. Br J Cancer 122: 1417–1424, 2020. doi:10.1038/s41416-020-0789-7.
- 412. Lim JH, Kang D, Hong YS, Kim H, Ryu S, Chang Y, Park HY, Cho J. Association between reproductive lifespan and lung function among postmenopausal women. J Thorac Dis 12: 4243–4252, 2020. doi:10.21037/jtd-19-3726.
- Thomas ET, Guppy M, Straus SE, Bell KJ, Glasziou P. Rate of normal lung function decline in ageing adults: a systematic review of prospective cohort studies. BMJ Open 9: e028150, 2019. doi:10.1136/ bmjopen-2018-028150.
- 414. Zanni MV, Currier JS, Kantor A, Smeaton L, Rivard C, Taron J, Burdo TH, Badal-Faesen S, Lalloo UG, Pinto JA, Samaneka W, Valencia J, Klingman K, Allston-Smith B, Cooper-Arnold K, Desvigne-Nickens P, Lu MT, Fitch KV, Hoffman U, Grinspoon SK, Douglas PS, Looby SE. Correlates and timing of reproductive aging transitions in a global cohort of midlife women with human immunodeficiency virus: insights from the REPRIEVE Trial. J Infect Dis 222: S20–S30, 2020. doi:10.1093/infdis/jiaa214.
- 415. Nicolini A, Barbagelata E, Tagliabue E, Colombo D, Monacelli F, Braido F. Gender differences in chronic obstructive pulmonary diseases: a narrative review. Panminerva Med 60: 192–199, 2018. doi:10.23736/S0031-0808.18.03463-8.
- Zaibi H, Touil A, Fessi R, Ben Amar J, Aouina H. Asthma in menopausal women: clinical and functional particularities. Tanaffos 19: 216–222, 2020.
- 417. Triebner K, Johannessen A, Puggini L, Benediktsdóttir B, Bertelsen RJ, Bifulco E, Dharmage SC, Dratva J, Franklin KA, Gíslason T, Holm M, Jarvis D, Leynaert B, Lindberg E, Malinovschi A, Macsali F, Norbäck D, Omenaas ER, Rodríguez FJ, Saure E, Schlünssen V, Sigsgaard T, Skorge TD, Wieslander G, Zemp E, Svanes C, Hustad S, Gómez Real F. Menopause as a predictor of new-onset asthma:

- a longitudinal Northern European population study. **J Allergy Clin Immunol** 137: 50–57.e6, 2016. doi:10.1016/j.jaci.2015.08.019.
- 418. Schabath MB, Wu X, Vassilopoulou-Sellin R, Vaporciyan AA, Spitz MR. Hormone replacement therapy and lung cancer risk: a case-control analysis. Clin Cancer Res 10: 113–123, 2004. doi:10.1158/1078-0432.ccr-0911-3.
- 419. Ganti AK, Sahmoun AE, Panwalkar AW, Tendulkar KK, Potti A. Hormone replacement therapy is associated with decreased survival in women with lung cancer. J Clin Oncol 24: 59–63, 2006. doi:10.1200/JCO.2005.02.9827.
- 420. Jin C, Lang B. Hormone replacement therapy and lung cancer risk in women: a meta-analysis of cohort studies: hormone replacement therapy and lung cancer risk. **Medicine (Baltimore)** 98: e17532, 2019. doi:10.1097/MD.0000000000017532.
- 421. Kos-Kudła B, Ostrowska Z, Marek B, Ciesielska-Kopacz N, Kajdaniuk D, Kudła M. Effects of hormone replacement therapy on endocrine and spirometric parameters in asthmatic postmenopausal women. Gynecol Endocrinol 15: 304–311, 2001.
- 422. Chotirmall SH, Greene CM, McElvaney NG. Immune, inflammatory and infectious consequences of estrogen in women with cystic fibrosis. Expert Rev Respir Med 6: 573–575, 2012. doi:10.1586/ers. 12.59.
- 423. McCleary N, Nwaru BI, Nurmatov UB, Critchley H, Sheikh A. Endogenous and exogenous sex steroid hormones in asthma and allergy in females: a systematic review and meta-analysis. J Allergy Clin Immunol 141: 1510–1513.e8, 2018. doi:10.1016/j.jaci.2017.11.034.
- 424. Nwaru BI, Simpson CR, Soyiri IN, Pillinger R, Appiagyei F, Ryan D, Critchley H, Price DB, Hawrylowicz CM, Sheikh A. Exogenous sex steroid hormones and asthma in females: protocol for a population-based retrospective cohort study using a UK primary care database. BMJ Open 8: e020075, 2018. doi:10.1136/bmjopen-2017-020075.
- 425. Nwaru BI, Pillinger R, Tibble H, Shah SA, Ryan D, Critchley H, Price D, Hawrylowicz CM, Simpson CR, Soyiri IN, Appiagyei F, Sheikh A. Hormonal contraceptives and onset of asthma in reproductive-age women: population-based cohort study. J Allergy Clin Immunol 146: 438–446, 2020. doi:10.1016/j.jaci.2020.02.027.
- 426. Hansen ES, Aasbjerg K, Moeller AL, Meaidi A, Gade E, Ulrik CS, Torp-Pedersen C, Backer V. Hormonal contraceptives are associated with an increase in incidence of asthma in women. J Allergy Clin Immunol Pract 11: 2484–2490.e3, 2023. doi:10.1016/j.jaip. 2023.04.038.
- Coelingh Bennink HJ, van Gennip FA, Gerrits MG, Egberts JF, Gemzell-Danielsson K, Kopp-Kallner H. Health benefits of combined oral contraceptives a narrative review. Eur J Contracept Reprod Health Care 29: 40–52, 2024. doi:10.1080/13625187.2024. 2317295.
- 428. White RJ. Estrogen: friend or foe in pulmonary hypertension? Am J Respir Crit Care Med 193: 1084–1086, 2016. doi:10.1164/rccm. 201512-2511ED.
- 429. Cheng ES, Velentzis LS, Weber M, Steinberg J, Canfell K, Yu XQ. Female reproductive and hormonal factors and lung cancer mortality among never-smokers: a prospective cohort study of 287 408 Chinese women. Int J Cancer 152: 2528–2540, 2023. doi:10.1002/ijc.34508.
- 430. Yin X, Kishida R, Abe SK, Islam MR, Rahman MS, Saito E, et al. Association between reproductive factors with lung cancer incidence and mortality: a pooled analysis of over 308,000 females in

- the Asia cohort consortium. **Int J Cancer** 154: 2090–2105, 2024. doi:10.1002/ijc.34866.
- Turner GA, Amoura NJ, Strah HM. Care of the transgender patient with a pulmonary complaint. Ann Am Thorac Soc 18: 931–937, 2021. doi:10.1513/AnnalsATS.202007-801CME.
- 432. Kostas-Polston EA, Bevans M, Shea TL, McGlothen-Bell K, Nies MA, Alexander IM, Johnson-Mallard V, Clayton JA. Ensuring accountability for consideration of sex as a biological variable in research. Nurs Outlook 72: 102194, 2024. doi:10.1016/j.outlook.2024.102194.
- 433. Clayton JA. Applying the new SABV (sex as a biological variable) policy to research and clinical care. **Physiol Behav** 187: 2–5, 2018. doi:10.1016/j.physbeh.2017.08.012.
- 434. Benoni R, Panunzi S, Batani V, Moretti F, Fuggini S, Todesco M, Senna G, Poli A, Vianello A, Caminati M. Clinical response to biologicals for severe asthma: any relevance for sex in different age

- ranges? **ERJ Open Res** 8: 00670-2021, 2022. doi:10.1183/23120541.00670-2021.
- 435. Pelaia C, Casarella A, Pelaia G, Marcianò G, Rania V, Muraca L, Cione E, Bianco L, Palleria C, D'Agostino B, Mazzuca D, De Sarro G, Mizio GD, Gallelli L. What is the role of sex-related differences in the effectiveness and safety of biological drugs used in patients with severe asthma? J Clin Pharmacol 63: 544–550, 2023. doi:10.1002/jcph.2194.
- Ciudad-Gutiérrez P, Fernández-Rubio B, Guisado-Gil AB. Gender bias in clinical trials of biological agents for severe asthma: a systematic review. PLoS One 16: e0257765, 2021. doi:10.1371/journal. pone.0257765.
- Somayaji R, Chalmers JD. Just breathe: a review of sex and gender in chronic lung disease. Eur Respir Rev 31: 210111, 2022. doi:10. 1183/16000617.0111-2021.