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Shah K, McCormack CE, Bradbury NA. Do you know the sex of your cells?
Am J Physiol Cell Physiol 306: C3–C18, 2014. First published November 6, 2013;
doi:10.1152/ajpcell.00281.2013.—Do you know the sex of your cells? Not a
question that is frequently heard around the lab bench, yet thanks to recent research
is probably one that should be asked. It is self-evident that cervical epithelial cells
would be derived from female tissue and prostate cells from a male subject
(exemplified by HeLa and LnCaP, respectively), yet beyond these obvious exam-
ples, it would be true to say that the sex of cell lines derived from non-reproductive
tissue, such as lung, intestine, kidney, for example, is given minimal if any thought.
After all, what possible impact could the presence of a Y chromosome have on the
biochemistry and cell biology of tissues such as the exocrine pancreatic acini?
Intriguingly, recent evidence has suggested that far from being irrelevant, genes
expressed on the sex chromosomes can have a marked impact on the biology of
such diverse tissues as neurons and renal cells. It is also policy of AJP-Cell
Physiology that the source of all cells utilized (species, sex, etc.) should be clearly indicated
when submitting an article for publication, an instruction that is rarely followed (http://
www.the-aps.org/mm/Publications/Info-For-Authors/Composition). In this review we
discuss recent data arguing that the sex of cells being used in experiments can
impact the cell’s biology, and we provide a table outlining the sex of cell lines that
have appeared in AJP-Cell Physiology over the past decade.

amelogenin; cell line; sex; X chromosome; Y chromosome

IN 2001, THE INSTITUTE OF MEDICINE published a significant report
highlighting the importance of sex as a variable in human and
experimental studies (278). Over a decade later, the recom-
mendations of this report have received meager acceptance.
Most researchers acknowledge the importance of describing
the sex of animals used in studies. In many cases only male
animals will be used, in order to obviate any “complications”
that may arise from hormonal differences in female animals
during their reproductive cycles. Sex selection is obviously
important in some studies, however. For example, it is obvious
that a research study on milk production and lactation would
utilize only female animals, whereas studies on spermatogen-
esis would be confined to male subjects. Despite the clear
importance of knowing the sex when using whole animals,
such sex assignments are paid scant attention when studies are
performed using cell lines (Fig. 1). After all, cells derived from
male and female organisms display the same general charac-
teristics. Cells derived from both sexes support metabolic
processes, proliferate, and undergo differentiation. Cells,
whether they are obtained from a male or female, possess a
nucleus, mitochondria, endoplasmic reticulum, Golgi appara-
tus, and other cellular organelles. The assumption is made that,
because there is really no difference in architecture or function
between cells from male and female organisms, the Instruc-
tions to Authors (when submitting to the AJP-Cell Physiology),

which state that the source of all cells utilized (species, sex,
etc.) should be clearly indicated, can be happily ignored. A
survey of a recent issue of AJP-Cell Physiology revealed that
only two articles referenced the sex of the animal used, and
none referenced the sex of the cell lines employed. Even when
including a larger sample size, 75% of all recent publications in
AJP-Cell Physiology did not discuss the sex of cell lines or
animals used in the investigations (Fig. 1). Such omissions are
not peculiar to AJP-Cell Physiology though. A recent review of
publications describing the use of cultured cells in cardiovas-
cular studies found a similar paucity of information on the sex
of the cell lines utilized (260). Why is the sex of cell lines used
in studies so often omitted from the final published article? It
is likely that the sex of the cells being used was simply not
known by the investigators, who, like most of us, simply regard
the sex of our cells as irrelevant. The utility of cultured cells in
identifying biological mechanisms, pathways, and processes is
beyond doubt. Indeed, the results from such studies are often
the basis for the development of new diagnostic and therapeu-
tic interventions in human medicine. However, only half of the
population may have a sex the same as the cell line on which
the diagnostic test or treatment was developed. Since all cell
lines have a “sex” (278), the complement of sex chromosomes
has the potential to influence biochemical pathways and cell
physiology (161). In this review, we provide a setting for the
basis of differences between male and female cells and high-
light why these differences will likely provide novel insights
into the roles of the X and Y chromosomes. Throughout this
review, we have avoided the use of the word “gender,” spe-
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cifically referring to the “sex” of cells. According to Institute of
Medicine, “sex” is a biological construct dictated by the presence
of sex chromosomes and in animals and humans the presence of
functional reproductive organs. On the other hand, “gender” is a
cultural concept referring to behaviors that might be directed by
specific stimuli (visual, olfactory) or by psychosocial expectations
that result from assigned or perceived sex and therefore can
influence biological outcomes (161, 278). This definition has now
been accepted as a new policy for sex and gender in reporting
research in all APS journals (http://www.the-aps.org/mm/hp/
Audiences/Public-Press/For-the-Press/releases/12/9.html). Infor-
mation on the sex of cell lines routinely used by authors of
publications in AJP-Cell Physiology is also presented. Finally,
we pose several questions that we hope will guide the scientific
community with regard to the potential role of sex in studies
using cell lines and at least cause researchers to consider the
impact of the sex of a cell on the interpretation of experimental
results.1

Males and Females Are Different

The first question to be asked is “is there any evidence of sex
differences between male and female non-sexual tissue that
cannot be explained by hormonal differences?” As physiolo-
gists, we all accept that there are obvious differences between
males and females. In vertebrates, sex differences are usually
attributed to the effects of embryonic and post pubertal hor-
mones. Indeed, while many of the more obvious differences
between male and female vertebrates are clearly dependent on
hormones, the role of hormones in other tissues is much less
certain. Aristotle, the ancient Greek philosopher and polymath,
more than 2,000 years ago is purported to have articulated the
notion that sexual dimorphism exists at the earliest stages of
embryonic growth. He believed that male embryos became
“animated” 40 days post conception, whereas female embryos
required a further 50 days before becoming “animated” (4).
Intriguingly, recent studies tend to support the notion of early

differences between male and female embryos. For example,
male embryos created through in vitro fertilization grow faster
prior to implantation than female embryos (6, 199, 284).
Importantly, these findings suggest that genetic cellular differ-
ences between sexes exist before the onset of hormonal expo-
sure. Moreover, even in adults, hormonal ablation or supple-
mentation does not completely eliminate or recreate sexual
differences observed in the progression of certain tumors from
male and female patients (38). Furthermore, pathologies that
display a sex disparity, such as neurodegenerative (242, 299),
cardiovascular (266), and autoimmune (16, 82, 140) disease,
differ in frequency but not severity, a difference not readily
explained by hormonal differences. Thus, it is clear that not
every difference observed between male and female cells can
be attributed to differences in exposure to sex hormones.
Fundamental to the replication of chromosomes is the telo-
mere, that short region of repetitive nucleotides at the end of
each chromatid that protects the chromosome from deteriora-
tion or fusion with other chromosomes. The length of the
telomere is shorter in older males compared with females (7,
270), leading to the postulation that differences in replicative
rates affect telomere shortening and aging (253), and may
explain why males die younger than females (236, 274).

Males Have a Y Chromosome

On a simplistic level, differences between male and female
cells are entrenched in differences in genetic content, as ex-
pressed by the presence of sex chromosomes; two X chromo-
somes in female cells, and one X and one Y chromosome in
male cells (Fig. 2). The role of the Y chromosome in male sex
determination arose from observations that XY and XYY
(Klinefelter syndrome) individuals develop testes whereas XX
and XO (Turner syndrome) individuals instead develop ovaries
(72, 104): note that individuals with Turner syndrome have
so-called streak gonads located below the fallopian tubes and
generally show no evidence of germinal elements (89). Thus
while the presence of a single Y chromosome is necessary and

1 This article is the topic of an Editorial Focus by Catherine M. Fuller and
Paul A. Insel (74a).
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Fig. 1. Distribution of studies by sex, published in AJP-Cell Physiology in
2013. Shown is the percentage of articles describing the sex of cells derived
from male subjects, female subjects, or unreported (n � 100 articles randomly
selected from AJP-Cell Physiology manuscripts published in 2013).

Fig. 2. Comparison of size and gene organization for X and Y chromosomes.
Approximate locations of chromosome-specific genes for zinc finger proteins
(ZFX and ZFY) and ribosomal proteins (RPS4X and RPS4Y) are shown, as well
as locations for chromosome-specific amelogenin (Amel) genes used for sex
determination. See text for details.
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sufficient to generate a male gonadal phenotype, the presence
of a single X chromosome, while necessary, is not sufficient to
generate a full female gonadal phenotype. In 1990, the gene
responsible for testicular determination, named SRY (sex-de-
termining region Y) was identified (100, 111, 237, 245) (Fig. 2)
and comprises a single exon encoding a 204 amino acid protein
containing a DNA-binding domain (HMG-box: High Mobility
Group), arguing for this protein as a regulator of gene expres-
sion. For many decades it was believed that the only role of the
Y chromosome was the development of the male gonadal
phenotype and the initiation of male fertility (251). This
opinion was reinforced by the dearth of other obvious pheno-
types that segregated with the Y chromosome; “hairy ears”
being one of the few well-documented exceptions (59). How-
ever, this concept of the Y chromosome as a genetic wasteland
is now being challenged (180, 210). Indeed, since the sex
chromosomes account for 5% of the total human genome
(1,000–2,000 genes on the X chromosome and �50 genes on
the Y chromosome; 129, 224, 246), there is at least the
mathematical possibility that 1:20 proteins (and related bio-
chemical reactions and pathways or cell biological processes)
would differ between males and females. Given such odds, it is
hard to imagine that cells from males and females would not
differ in at least some aspects of cellular biochemistry and
physiology. The Y chromosome has two genetically distinct
aspects (Fig. 2). The distal part of the short arm of the Y
chromosome is shared with the most distal part of the short arm
of the X chromosome and can recombine with its X chromo-
some counterpart during meiosis in males, a region termed the
“pseudoautosomal region” because loci in this region undergo
recombination during spermatogenesis, akin to homologous
recombination between autosomes (98, 215). A second pseu-
doautosomal region is also present on the distal portion of the
long arms of the sex chromosomes (74). The remainder of the
Y chromosome does not undergo recombination with the X
chromosome and strictly comprises Y chromosome-specific
DNA. Compared with other chromosomes, the Y chromosome
has a limited number of genes. The roughly two dozen differ-
ent genes encoded on the Y chromosome can be divided into
two categories. One cohort of Y chromosome-specific genes is
expressed exclusively in the testes and is likely involved in
gonadal development and spermatogenesis; mutation or dele-
tion of some of these genes leads to male infertility (113, 129,
154). A second group of Y chromosome genes consists of
genes that do have homologous counterparts on the X chro-
mosome but may yield slightly different final protein products
(275). For example, the gene on the Y chromosome encoding
the ribosomal protein S4 (RPS4Y; Fig. 2), a component of the
40S subunit, results in a slightly different protein than that
expressed on the X chromosome (RPS4X) with a 19 amino acid
difference between the two sex-distinct proteins (66, 275).
While functionally equivalent isoforms of ribosomal proteins
exist in yeast, these differ by no more than a few amino acids
(279), the 19 amino acid difference between “male” and
“female” ribosomes suggesting the possibility of differences in
ribosomal function between “male” and “female” cells. Simi-
larly, nucleotide sequence analysis of the ZFY (zinc finger
protein) shows it to be similar but distinct (383 amino acids of
393 are identical) from its X chromosome (ZFX) counterpart
(233) (Fig. 2). The differences or similarities between other
homologous proteins remains to be determined. However,

since RP4SY and ZFY are present only in males, it is possible
that such “male”-specific expression can result in potentially
extensive biochemical differences between “male” cells and
“female” cells. Regardless of whether or not genes on the Y
chromosome, other than SRY, are important in determining
cellular function, the SRY genes certainly are. In the 45-day-old
46XY human fetus, these genes cause the gonadal ridge to
develop into the testes (89). The fetal testes secrete Mullerian
inhibiting hormone, which causes the regression of primordial
Mullerian ducts; thus the fallopian tubes and uterus do not
develop. The fetal testes also secrete testosterone, causing the
differentiation of the primordial Wolffian duct system into the
epididymis and vas deferens.

Females Have Two X Chromosomes and No Y

In contrast to male genomes that have only one X chromo-
some, female genomes have twice the amount of X chromo-
some genetic material compared with males. Thus, whereas
females can be either homozygous or heterozygous with re-
spect to X chromosome-linked traits, males (due to the pres-
ence of only one X chromosome) are hemizygous. Products of
the X chromosome genes, like those of autosomes, are in-
volved in many aspects of cellular function, metabolism de-
velopment, and growth (224). Indeed, the X chromosome
contains the largest number of immune-related genes within
the entire genome (19). In contrast to males where genes from
only one X chromosome are present, the occurrence of two X
chromosomes in females gives rise to the potential expression
of twice the amount of X chromosome DNA in females
compared with males. This double dosage of X chromosome
genes in females is, however, annulled at many loci by the
process of X chromosome inactivation (39, 167, 196, 283).
This fundamentally female process is never found in normal
XY males (89) and only occurs in female cells outside of the
germline. The process of X inactivation profoundly alters the
cell’s transcriptional landscape, engendering epigenic changes
and differential nuclear compartmentation of chromosomes in
a highly regulated fashion (97). The inactive chromosome
changes conformation to yield a darkly staining mass called the
sex chromatin or Barr body (143). Because of the random
nature in the choice of which of the two X chromosomes are
inactivated (206), females have two epigenetically distinct
populations of cells, in which either the maternally or the
paternally derived X chromosome is expressed (196). Males,
by contrast, only express an active maternally derived X
chromosome in all cells; of course the “maternally derived” X
chromosome could itself be paternally derived. The random
feature of X chromosome inactivation leads to a mosaic of
expression of the two X chromosomes in female tissues, and
this has been invoked as the basis for lack of a tight genotype-
phenotype correlation in the severities of recessive X chromo-
some-linked diseases (156). A classic example of random
X-inactivation is presented by the calico, or tortoiseshell, cat.
Each X chromosome expresses either an orange or a black coat
coloring, yet the calico cat coat pattern is extremely common.
This illustrates the fact that both X chromosomes contribute to
the cat’s color and explains why almost all calico cats are
female (181). Since males only have a single X chromosome,
“variants” in genes on one X chromosome cannot be obviated
by a second X chromosome. Thus, males demonstrate a
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clearer, more common or more extreme version of any variant
phenotype than females do. This is exemplified at its extreme
by “X-lined” genetic diseases, including Duchenne and Becker
muscular dystrophies (168), hemophilia (24), porphyria (3)
X-linked cone-and rod-dystrophies (160), and color blindness
(174). A dramatic example of male hemizygosity for X chro-
mosome-linked traits is seen in X chromosome-linked domi-
nant mutations. Mutations in these genes are embryonically
lethal to males in utero and are therefore only seen in females.
For example, X chromosome-linked incontinentia pigmenti is a
relatively benign dermatological condition in females, but it is
lethal to males who inherit a mutant allele (249).

Intriguingly, in females there are reports of a strong somatic
selection against cells that bear mutations on the active X
chromosome (17, 277). For example, the B-cell lineage in
heterozygous females carrying mutations at the X chromo-
some-linked agammaglobulinemia show selective inactivation
of the mutant chromosome and expression of genes from the
non-mutant X chromosome (45). Despite the process of X-
chromosome inactivation, not all genes on the X chromosome
are subject to inactivation (55, 277, 289). As much as 15% of
X chromosome-linked genes have been identified as being
expressed from the “inactive” X chromosome in at least some
cells in culture (34, 35). A notable example of this is seen in the
ZFX gene (185, 233) (Fig. 2), a zinc finger protein expressed
only on the X chromosome and therefore completely absent
from males. Moreover, some genes are transcribed with equal
efficiency from both the “active” and “inactive” chromosome.
For example, gastrin-releasing peptide (GRP) is known to be
expressed by both the active and inactive X chromosomes.
More than a curiosity, this double expression of GRP may have
important clinical consequences, as elevated levels of GRP are
proposed to be associated with an elevated risk of lung cancer
in women who smoke (241).

Male and Female Cells Are Not the Same

Nearly all biochemical, signaling, and trafficking pathways
elucidated for mammalian cells have been obtained from stud-
ies on cell lines. Some of these cell lines have been cultured for
over 50 years and were considered for their functional and
morphological features without regard to their sex origin. A
notable exception is the HeLa cell, which is the oldest and
probably most widely used of all cell lines. Obtained from a
patient with cervical cancer, the cells were taken without
consent from Henrietta Lacks, a female patient at Johns Hop-
kins hospital, who eventually died of her cancer on October 4,
1951 (78, 106, 231). Indeed, the sex of the HeLa cell is fairly
well known even to the general public thanks to a recent best
seller in the popular science press (247). HeLa cells have been
central to many biomedical breakthroughs of the last half
century, from their initial use in the development of a polio
vaccine (231) to their key role in studies leading to the
awarding of two Nobel Prizes in Physiology or Medicine:
Harald zur Hausen, in 2008, for his discovery of human
papilloma viruses causing cervical cancer (26), and Elizabeth
Blackburn, Carol Greider, and Jack Szostak, in 2009, for their
discovery of how chromosomes are protected by telomeres and
the enzyme telomerase (231, 239, 265). More recently, HeLa
cells have again gained prominence as drivers of National
Institutes of Health (NIH) policy. In April 2013, a group

working at the European Molecular Biology Laboratory in
Heidelberg, Germany, published the genome of the HeLa cell
line (130). At the same time, an NIH-funded group working at
the University of Washington was preparing to publish their
version of the HeLa genome (1). Given that immediate descen-
dants of Henrietta Lacks are still alive, concern was raised by
other researchers and by the Lacks family that the genome
sequence could reveal heritable aspects of Lacks’ germline
DNA. Such sequence data could be used to draw inferences
concerning the Lacks family’s medical status, engendering a
quagmire of legal and ethical issues. NIH has now imple-
mented a new policy regarding the distribution and use of
genome sequence data from HeLa cells (grants.nih.gov/grants/
guide/notice-files/NOT-OD-13–099.html). Under the new
guidelines, the DNA sequence data from HeLa cells will be
subject to controlled use; applications to access the sequence
data are being reviewed by a newly formed HeLa Genome
Data Access working group at NIH, on which two members of
the Lacks family will serve. The hardiness of the HeLa cell has,
unfortunately, also proven to be one of its greatest concerns.
HeLa cells have been noted to contaminate and indeed over-
grow other cell cultures grown within the same laboratory,
interfering with, and invalidating, many publications. The
degree to which HeLa cell contamination is a problem remains
unknown, as few researchers have the time, money, or knowl-
edge for determining the purity of cell lines within their
laboratories. However, contamination by HeLa cells have been
estimated to range between 10% and 20% of all cell lines in use
(150), and cross-contamination remains a major ongoing prob-
lem in modern cell cultures (32, 173). Despite these concerns,
cell lines are vital to much of current biomedical research. The
advances in basic biomedical sciences, and in the development
of pharmacological treatments for numerous diseases, would
not be possible without the use of cell lines obtained from
human and non-human sources. As scientists, we owe a great
debt to those patients who have wittingly and unwittingly
provided the tissue samples upon which so many of us rely for
our research.

Differences between the male and female brain have been a
subject of study by philosophers, poets, and scientists alike. It
has long been held that sex differences in the brain are caused
by differential exposure to gonadal secretions during fetal and
neonatal development (5), with distinct sexual dimorphism
particularly in sex steroid-concentrating regions (145). How-
ever, there is accumulating evidence that supports the notion of
sexual dimorphism in the brain in the absence of gonadal
secretions (202, 218). For example, morphological and func-
tional sex differences in dopaminergic (and probably norad-
renergic) neurons are seen in cultures of rat brain tissues
removed at day E14 (day of insemination � E0), whereas the
male rat gonad does not start to secrete testosterone until day
E15 (217). In fact, no measurable differences in whole body
androgens are seen in rats until after E18. Many of the
differences in brain-derived cells are retained even following
growth of excised tissues, from male and female brains, in
identical culture media. Studies by Dewing et al. (53) have
described over 50 different sex-dimorphic genes, i.e., genes
that display intrinsic differences between male and female cells
that are not dependent on hormone exposure and persist in cell
culture. Dopaminergic neurons, although accounting for less
than 1% of brain neurons, are nonetheless critical for such
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diverse brain functions as voluntary movement (134, 263),
stress response (135), and addictive behavior/reward (159,
220). Dopaminergic neurons from female rat fetuses, in disso-
ciated cell cultures, are morphologically distinct from those
obtained from male rat fetuses, differences that are present
even when gonadal hormones are absent (36). Moreover,
cultured female neurons display a dopamine uptake rate twice
that of their male counterparts (217). Gene array studies using
nigral dopaminergic neurons from male and female patients
with Parkinson’s disease (obtained post mortem by laser cap-
ture dissection) have shown considerable sex-specific tran-
scriptional profiles (244). Sex dissimilarities were not confined
to a specific pathway but displayed differential transcription
patterns in signal transduction, neuronal maturation, protein
kinases, proteolysis, and WNT signaling (31, 244). Results
from such studies support the notion that being male is a risk
factor for Parkinson’s disease. Indeed, epidemiological studies
have shown that both the incidence and the prevalence of
Parkinson’s disease are 1.5 to 2 times greater in males that
females (144, 280). Furthermore, the age of onset of Parkin-
son’s disease is slightly earlier (mean 2.2 years) in men than
women (92).

The hippocampus plays a key role in both short- and long-
term memory (133, 184), as well as spatial navigation (22).
Cultured male hippocampal neurons survive longer under nor-
moxic conditions than female-derived hippocampal neurons
but are more sensitive to ischemia than their female counter-
parts (99). In Alzheimer’s disease, the hippocampus is one of
the first regions of the brain to be affected; women are
disproportionately affected by Alzheimer’s disease, with two
thirds of all sufferers being female (37). It is interesting to
speculate that the sex disparity observed between male and
female Alzheimer’s patients may have an underlying basis in
genes differentially expressed from the X and/or Y chromo-
somes in hippocampal neurons. In addition to differences in
sensitivity to oxygen tension between male and female cells
from the hippocampus, differential sensitivity to a wide range
of cytotoxic agents has been shown for several neurons of the
central nervous system (CNS) (60). For example, neurons from
male rats are more sensitive to nitrosative (ONOO�) stress
than those neurons obtained from female rats. In contrast,
neurons from female rats are more sensitive to apoptosis-
inducing agents (staurosporine and etoposide) than neurons
from their male counterparts (60). These observations are
relevant to many CNS pathologies, where nitrosative stress is
thought to play an important role in cerebral ischemia and
traumatic brain injury. At a biochemical level, this may be
related to the observation that male neurons are unable to
maintain high levels of the reductant glutathione (60), a key
protector from oxidative insult (73, 109). Mitochondria from
female rats contain higher glutathione peroxidase (a key en-
zyme in maintaining cellular glutathione levels) activity than
those from males (25). Such differences between the ability of
male and female neurons to respond to oxidative stress and
ischemia may provide an underlying mechanism for the obser-
vation that boys have a worse outcome following traumatic
brain injury compared with girls (58).

Sex diversity of gene expression is not reserved for the CNS
alone, however. For example, kidney cells obtained from
female embryonic rats are significantly more sensitive to eth-
anol- and camptothecin-induced apoptosis than their male

counterparts (197). While male and female splenocytes display
similar responses to nitrosative stress and staurosporine-in-
duced apoptosis, female splenocytic cells are more sensitive
than their male counterparts and react to significantly lower
doses of staurosporine than male cells (60). Cyp1A1 is a
member of the cytochrome P-450 family, a family of proteins
responsible for the metabolism and inactivation of many drugs
and toxins (211, 272). Cyp1A1 plays a particularly prominent
role in the metabolism of polycyclic aromatic hydrocarbons
present in cigarette smoke. Female smokers have a higher level
of aromatic/hydrophobic DNA adducts in lung tissue than
males, due to a more responsive Cyp1A1 enzyme (166). High
levels of lung DNA adducts have been related to an early onset
of lung cancer (228), and several, though not all, epidemiolog-
ical studies have suggested that with similar exposure to
cigarette smoke, females may be at greater risk of developing
lung cancer than males (295). Differences in drug metabolism
are also seen in male and female livers. Female liver cells have
more cytochrome CYP3A compared with male liver cells
(186). Again, more than just a biochemical curiosity, such
differences in CYP3A expression between male and female
hepatocytes have important clinical consequences, as the ac-
tions of CYP3A account for the metabolism of half the drugs
in the pharmacopeia (261, 296). Thus, for 50% of prescription
drugs, the effectiveness of a particular drug dosage of 50%
may be quite different in females compared with males (90).

A recent attempt to catalog differential gene expression
between male and female cells examined 233 lymphoblastoid
cell lines: 115 female and 118 male lines. Utilizing 4,799
probes, 10 autosomal genes were identified as having a sex-
specific expression pattern (298). These genes encoded a wide
variety of proteins involved in multiple cellular processes,
including cell adhesion, apoptosis, zinc ion binding, transcrip-
tion factors, and structural molecules. When such studies are
extended to more tissues, it appears that thousands of genes
may show sexually dimorphic gene expression (290). Microar-
ray analysis of 23,574 transcripts from murine liver, adipose,
muscle, and brain tissues showed highly tissue-specific pat-
terns of sexually dimorphic gene expression (290). The degree
of sexual dimorphism ranged from �14% in brain to �70% in
liver, likely (at least in part) accounting for the differential drug
metabolism observed between males and females (2). Given
such differences in gene expression, the question arises as to
whether such differences result in a physiological phenotype.
Stem-cell mediated muscle regeneration in mouse models of
muscular dystrophy has raised some interesting data related to
this point (51). Female muscle-derived stem cells are less
sensitive to oxidative stress and regenerate skeletal muscle
much more efficiently than muscle-derived stem cells from
their male counterparts when transplanted into mdx or mdx/
SCID mice, a dystrophin-deficient animal model of muscular
dystrophy (51). Precisely how these differences arise is not
immediately apparent, although differences in handling of
oxidative stress appear to be a key feature between male and
female cells. The finding that male and female muscle-derived
stem cells have different properties is likely to have a big
impact on other stem cell-mediated therapies should the find-
ings be replicated for other diseases. Although the molecular
mechanisms and genes involved in the sex disparity observed
across various cell types await a fuller elucidation, what does
seem to be a recurrent theme is the observation that female
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cells are better able to survive stress than male cells. Given the
broad range of stress responses, this could arise from multiple
genes present on one or both of the X chromosomes in females.

What Sex Are My Cells?

The notion that there are sex differences between cells has
gained prominence through the increased use of primary
cells obtained from both animals and humans. For animal
studies, the sex of the primary cells can be known without
difficulty, though IRB restrictions usually preclude imme-
diate knowledge of the sex of the patient when cells are
derived from human tissues. In contrast, the sex of cultured
cells has been rarely considered (161, 260; Fig. 1). Indeed,
while cultured cell lines have provided a plethora of data on
biochemical pathways, cell biological processes, and gene
expression, they have essentially been considered asexual
objects of study. To facilitate the inclusion of the cells’ sex
in future manuscript submissions to the AJP-Cell Physiol-
ogy, Table 1 was generated by examining the last decade of
papers published in AJP-Cell Physiology. Although clearly
not an exhaustive list, it does represent the majority of cell
lines used by submitting authors. Any omission of cell lines
is the responsibility of the authors of this review and was
completely unintentional. While the sexes presented in Ta-
ble 1 are based on published data, it is also possible that
some researchers may have worked with contaminated or
misidentified cell lines (41), including incorrect sex assign-
ment (63).

Yet, how can sex be determined for a cell line? In the
modern era of molecular genetics, determination of the sex of
a cell line utilizes an identical approach to that taken by
forensic pathologists in determining the sex of human remains.
Sexing cells by polymerase chain reaction (PCR)-based meth-
odology is accomplished by amplification of homologous
genes found on the X and Y chromosomes. The amelogenin
gene is one such gene, and it codes for an extracellular matrix
protein found in the developing tooth (64, 230). In humans, it
has been determined that there are two amelogenin genes, one
on the X chromosome (in the p22 region of the short arm; 156)
and the other in the pericentric region of the Y chromosomes
(132, 172, 230). Nakahori et al. (172) demonstrated the pres-
ence of a 6-bp insertion in intron 1 of the amelogenin-Y
sequence (Y chromosome) that was absent from the ameloge-
nin-X (X chromosome) gene. This 6-bp insertion results in a
size difference between PCR products covering the intron-1
region, and it has been used to differentiate males from females
(91, 147). Since both males and females have at least one X
chromosome, the PCR product derived from the X chromo-
some is, automatically, a positive control. Separation of the
“male” and “female” PCR products can be achieved by gel
electrophoresis or denaturing high-performance liquid chroma-
tography (240). Thus, females will show a single band for the
amelogenin-X gene, whereas males will have two bands, one
corresponding to the amelogenin-X gene and one from the
male amelogenin-Y gene (Fig. 3). Furthermore, since the area
under the curve can be used to quantitate the amount of PCR
product, it is also possible to identify XXY (Klinefelter syn-
drome) and XYY DNA. Amelogenin-based sex tests are part of
various PCR multiplex reaction kits from different manufac-

turers and are widely used for DNA typing for samples in the
forensic field (29).

While the determination of amelogenin gene expression
should be relatively straightforward, there are a few cases
where sex assignment based on this assay has not aligned with
classic cytogenetic analysis of metaphase chromosomes. For
example, cell line ATTC CRL-5873 (NCI-H1514), established
in October 1986 from a 56-yr-old female with small cell lung
carcinoma, shows positive for the Y chromosome-specific
amelogenin sequence (63). Exactly how Y chromosome-spe-
cific PCR products end up in a female cell line is not entirely
clear, although the possibility exists that there has been a mis-
identification of the cell line (http://www.atcc.org/Products/Cells%
20and%20Microorganisms/Cell%20Lines/Misidentified%
20Cell%20Lines.aspx). As can also be seen in Table 1 (noted
by asterisks), some cell lines display an amelogenin test result
consistent with a female genotype, yet the tissue of origin is
from a documented male donor. For example, the PC-3 cell
line is derived from human prostate epithelial cells (arguably
an exclusively male tissue type), yet this cell line lacks the
amelogenin-Y gene consistent with a male genotype. Indeed,
over 100 reportedly “male” cell lines in the ATCC collection
appear to have lost all trace of their Y chromosome and yield
only X chromosome amelogenin during analysis (190) (Table
1). For example, in 1990, the cell line CRL-2234 was isolated
from a hepatocellular carcinoma from a 52-yr-old Asian male
(188). According to ATCC and “Short Tandem Repeat” (STR)
analysis, CRL-2234 cells characteristically have a low
amelogenin-Y peak, which decreases with passage. By passage
17, the Y chromosome can no longer be detected by routine
amelogenin analysis. Whether other Y chromosome-specific
genes are also lost with passage of CRL-2234, or indeed other
“male” cell lines, is not known. Such loss of the Y chromo-
some, of course, severely impedes assessment of sex chromo-
some function on cellular functions. Several intestinal epithe-
lial cell lines, including T84 (derived from a colonic carci-
noma, isolated by H. Masui from a metastatic site in the lung
from a 72-yr-old male patient; 54) and HT29 (isolated in 1964
by J. Fogh from a colonic cancer in a 44-yr-old female
Caucasian; 271), have been extensively employed both by
electrophysiologists and by cell biologists studying transepi-
thelial ion/solute transport and polarized protein trafficking.
Moreover, several studies have compared the biology of these
cell lines (33, 40, 44). Since T84 colonic epithelial cells are
derived from a male patient and HT29 colonic epithelial cells
are derived from a female patient, one would think that the T84
and HT29 cell lines would be an ideal pair to discern any
male/female differences in epithelial biology. However, when
direct comparisons are made within the same study, little
difference has been noted between T84 and HT29 cells. How-
ever, data from ATCC reveals that T84 cells have lost their Y
chromosome (as detected by amelogenin analysis). Thus,
whether similarities between T84 and HT29 cells are due to a
biology exclusively related to autosomal gene expression, or
whether differences would exist had T84 cells retained their Y
chromosome, is difficult to evaluate.

Sex Disparity

Many sex disparities in disease severity and prognosis have
been ascribed to hormonal differences. It will be interesting to
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Table 1. Table of the most commonly used cell lines appearing in AJP-Cell Physiology

Cell Line Sex Description Species Year Origin Reference

5637 Male Urinary bladder epithelium Human 1974 C (68, 69)
3T3-L1 Male Embryo fibroblast Mouse 1962 N (84, 85)
16HBE Lung epithelial Human N (46, 88)
A549 Male Lung epithelial Human 1972 C (79, 137)
A6 Male Kidney epithelial Xenopus 1965 N (165, 222)
A7r5 Aorta smooth muscle Rat 1976 N (115, 183)
AGS Female Stomach epithelial Human 1979 C (10, 11)
AML-12 Male Liver epithelial Mouse 1994 N (61, 282)
AML-193 Female Lymphoblast Human 1987 C (131, 229)
ARPE-19 Male Retinal pigmented epithelial Human 1986 N (62, 101)
BeWo Female Placenta Human 1966 N (193, 194)
BHK Kidney fibroblast Syrian hamster 1961 N (146, 148)
BT-549 Female Breast epithelial (ductal) Human 1978 C (112, 139)
BW5147.3 T-lymphocyte 1973 C (212, 213)
C2BBe1 Male Colonic epithelial cell (a CaCo-2 subclone) Human 1988 C (13, 200)
C2C12 Myoblast Mouse 1977 N (285, 286)
C6 Glial cell Rat 1968 N (18, 138)
C127 Female Mammary epithelial Mouse (141)
Ca SKI Female Cervical epithelial Human 1977 C (195, 291)
CaCo-2 Male* Colonic epithelial Human 1977 C (14, 107)
Calu-3 Male* Airway epithelial Human 1975 C (70, 94)
Capan-1 Male* Pancreatic epithelial Human (70, 71)
CCL-39 Female Fibroblast Chinese hamster 1964 N (214, 252)
CFPAC-1 Male Pancreatic epithelial Human 1990 C (155, 235)
CHO Female Ovarian epithelial Chinese hamster 1957 N (110, 207)
COS-7 Kidney fibroblast African green monkey 1964 N (81)
CPAE Female Pulmonary endothelial Cow 1979 N (23)
CRL-2234 Male* Hepatocyte Human 1990 C (189)
CV-1 Male Kidney fibroblast African green monkey 1964 N (105, 117)
DDT1-MF-2 Male Syrian hamster 1983 C (178, 257)
DU 145 Male Prostate epithelial Human 1978 C (187, 254)
ES-D3 Embryonic stem cell Mouse 1985 N (56, 57)
GH3 Female Pituitary epithelial Rat 1965 C (8, 258)
GH4C1 Female Pituitary epithelial Rat 1968 C (258, 259)
H441 Male Lung epithelial Human 1982 C (77, 179)
H460 Male Lung epithelial Human 1982 C (9, 30)
H4TG Male Liver epithelial Rat 1964 C (93, 203)
H9c2 Myocardial myoblast Rat 1976 N (28, 116)
H460 Male Lung epithelial Human 1982 C (9, 30)
HEK293 Female Embryonic kidney epithelial Human 1977 N (80, 83)
HEL299 Male Lung fibroblast Human 1982 C (201, 226)
HeLa Female Cervical epithelial Human 1953 C (78, 106)
HEP 3B Female Liver epithelial Human 1983 C (119, 120)
HEP G2 Male Liver epithelial Human 1994 C (119, 120)
Hepa 1–6 Liver epithelial Mouse 1987 C (48, 49)
HET-1A Male Esophageal epithelium Human 1986 N (162, 255)
hFOB Female Osteoblast Human 1997 N (95, 96)
HK-2 Male Kidney epithelial Human 1994 N (227)
HL-60 Female Premyeloblast Human 1979 C (75)
HOS Female Mixed osteoblast/epithelial Human 1975 C (153)
HPAF-II Male* Pancreatic epithelial Human 1982 C (114, 158)
HT-29 Female Colonic epithelial Human 1964 C (70, 271)
HuH7 Male Hepatocyte Human 1982 C (171)
HuTu80 Male Duodenal epithelial Human NA C (232)
IB3–1 Lung epithelial Human 1992 N (67, 297)
IEC-6 Male Small intestine epithelial Rat 1978 N (208, 209)
IMR-90 Female Lung fibroblast Human 1977 N (65, 176)
Jurkat Male Lymphoblast Human 1984 C (234, 276)
K562 Female Bone marrow lymphoblast Human 1975 C (118, 142)
KATO III Male* Gastric carcinoma mixed Human 1978 C (238)
KG-1 Male Macrophage Human 1978 C (121, 122)
LLC-PK1 Male Kidney epithelial Pig 1979 N (103, 198)
LnCAP Male Prostate epithelial Human 1977 C (102)
LS 174T Female Colonic epithelial Human 1976 C (262)
Ltk-11 Male Fibroblast Mouse 2004 N (124)
Mc3T3-E1 Preosteoblast Mouse 1981 N (273)
MCF-7 Female Breast epithelial Human 1970 C (27, 250)
MDA-MB-468 Female Breast epithelial Human 1977 C (192, 243)

Continued
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see how many of these differences really are hormonally
mediated and which arise from intrinsic differences in male
and female cells that are unrelated to hormonal exposure.
However, for human tissues, such experiments are technically
difficult, as testes in male fetuses start to develop by weeks 6
to 8. Studies are beginning to elucidate sex differences in gene
expression levels and phenotypic responses; many of these,

however, are still at the descriptive level. It will be important
to define the precise mechanistic underpinnings of these ob-
servations of differences between male and female cells and
how these observations may impact on cells that are main-
tained in cell culture. In 1993, the NIH mandated enrollment of
women in human clinical trials, yet no similar initiative has
been put forward for research using animals. As a result,
male-to-female bias in neuroscience research studies has been
estimated to be around 5.5:1 for male:female animal studies
(15). The reasons for this disparity are likely varied but are
mostly based on the assumption that results from males apply
to females, or because the presence of hormonal cycles will
increase the variance in acquired data, confounding interpre-
tation of data (177, 278). However, based on data presented in
this review it is clearly inappropriate to assume that results
from studies conducted on only one sex will apply wholesale to
the other (182).

Future Perspectives

We are now entering an era of physiological genomics and
individualized medicine. It is clear that the presence of an XY
or XX chromosome pair will have an impact on how an
individual will respond to, or metabolize, a particular drug
regimen (2). Many pharmaceutical companies and university
research labs are developing high-throughput screening assays
to identify and develop drugs for the treatment of various
human diseases. Not only are cell lines being utilized, but also

Table 1.—Continued

Cell Line Sex Description Species Year Origin Reference

MDCK Female Kidney epithelial Dog 1958 N (76)
MEF-1 Fibroblast Mouse 1993 N (292)
MG-63 Male Bone fibroblast Human 1977 C (21)
MIA-PaCa-2 Male* Pancreatic epithelial Human 1975 C (293)
mIMCD-3 Kidney epithelial Mouse 1991 N (216)
MKN45 Female Gastric carcinoma Human NA C (170)
NRK Kidney epithelial Rat NA N (50)
NuLi-1 Male Lung epithelial Human 2000 N (294)
OK Female Kidney epithelial Opossum 1978 N (126)
PC-3 Male* Prostate epithelial Human 1979 C (42, 108)
PC12 Male Adrenal gland Rat 1976 N (86)
pRSV-T Male Epithelial Human 1997 N (127)
PNT1A Male Prostate epithelial Human 1991 N (47)
RPE-1 Female Retina pigment epithelial Human 1998 N (152)
Saos-2 Female Bone epithelial Human 1975 C (69, 221)
SBC-3 Male Lung carcinoma Human 1997 C (123, 287)
SC2G Female Breast epithelial Mouse 1964 C (163, 164)
SCC-9 Male Tongue Human 1981 C (219)
SH-SY5y Female Bone marrow epithelial Human 1970 C (20, 225)
SK-MEL-2 Male Skin melanoma Human 1975 C (43)
SK-MEL-24 Male Skin melanoma Human 1976 C (71, 204)
SW620 Male* Colon epithelial Human 1976 C (69, 136)
SW 982 Female Synovium Human 1974 C (69, 288)
T84 Male* Colonic epithelia Human 1980 C (12, 54, 169)
TCCSUP Female Urinary bladder epithelia Human 1978 C (87, 175)
THP-1 Male Monocyte Human 1982 C (248, 264)
U-87 Male* Glioma Human 1966 C (69, 205)
U-937 Male* Monocyte Human 1974 C (125)
UMR-106 Bone epithelial Rat 1976 C (149, 191)
Y79 Female Retinoblastoma Human 1974 C (151)

Where possible, references include the first descriptions of the cell lines. Cells were derived from “C,” cancerous tissue or “N,” noncancerous tissue (usually
virally transformed). *Cells derived from human “male” tissues that now express only amelogenin-X and no amelogenin-Y. NA, original deposition date could
not be determined. This table is not intended to be a comprehensive data set, but rather to highlight the cell lines that are routinely used by authors in AJP-Cell
Physiology. For a larger database, the reader is directed to such sites as American Tissue Type Collection (ATTC.org).

Fig. 3. Comparison of electrophoretograms of sex test PCR products generated
by an ABI Gene Scanner 362A. Primers for “male” and “female” amelogenin
genes were employed. A, XXY cell line DNA with 1.8:1 X:Y peak area ratio;
B, XYY male with 1:1.8 X:Y peak area ratio; C, normal male DNA with 1.01:1
X:Y peak area ratio; D, normal female (note absence of Y peak). a.u., arbitrary
units. [From Sullivan et al. (256) with permission.]
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primary cells have a growing part in drug screening. The
question arises, should we screen on male cells? Female cells?
Or both? Even when it is known that there is a sex disparity in
disease severity, this issue is rarely raised. For example, it is
known that girls with cystic fibrosis do not grow as well as
boys and have poorer lung function (223); under the age of 20
there is a 60% greater chance of girls dying compared with
boys (52). The development of primary human airway cells as
a model for cystic fibrosis has been a huge boon for the
discovery and development of the first FDA-approved drug for
the treatment of a subpopulation of patients with cystic fibrosis;
yet none of the published reports has provided any information
on the sex of the patient from whom the airway cells were
obtained (267). A similar dearth of sex data is seen in other
reports on the identification and development of other drugs for
the treatment of patients with cystic fibrosis (268, 269). Such
omissions, however, are not solely at the discretion of the
researcher. IRB protocols prohibit the disclosure of any data
that may lead to patient identification. Thus for compliance,
researchers are generally not given access to such data. It can
be reasonably argued that it is now time to release the restric-
tion on revealing the sex of tissues used in drug screening.
Although the sex of the cells being used in drug screens could
be independently determined through amelogenin determina-
tion, this is both duplicative of existing data and may be
construed as attempts at patient identification. It is clear that
IRB members should at least appraise themselves of the im-
portance of researchers knowing the sex of tissues as they
develop screening assays. As noted earlier, muscle-derived
stem cells from female mice regenerate muscle tissue when
transplanted into dystrophic (mdx) mice to a greater extent than
muscle-derived stem cells from male mice (51). In addition, in
mdx mice, female hosts exhibit a significantly higher regener-
ation than male hosts (51). Whether this effect will be seen
with human muscle-derived stem cells is not known. Muscle-
derived stem cells can also undergo osteogenic differentiation
with BMP4 treatment in vitro (128, 281). When male muscle-
derived stem cells were used to evaluate ectopic intramuscular
bone formation, male hosts (unaltered or castrated males)
showed significantly more bone formation that when the same
male stem cells were placed in female hosts (unaltered or
ovariectomized) (157). Thus clearly, not only does the sex of
the stem cell matter, but also the sex of the host into which the
cells are placed. Should stem cells prove useful for the treat-
ment of patients with dystrophies or compromised bone wound
healing, the sex of the donor and recipient will have an impact
on patient prognosis, raising questions of survival and function
of cell grafts in the same- and opposite-sexed recipients.

Can those of us who predominantly work with cultured cells
escape the impact of the sex of our cells? With few exceptions,
cells are cultured in media containing serum, although some
manufacturers supply media to be used without serum. Cer-
tainly, unless specifically removed, such media will contain sex
steroids. What is the impact of these steroids when culturing
cells of unknown or indeed known sex? The matter is further
complicated if one is utilizing “male” cells that have lost their
Y chromosome (Table 1). While the issue of how representa-
tive is the biology of a cell line with respect to the tissue from
which it was obtained is one with which most researchers are
keenly aware, the potential impact of the loss of an entire
chromosome on a cell’s biology is seldom considered. It is now

perhaps time that such changes are contemplated. Although it
is premature (and probably unrealistic) to suggest that all
studies be performed on a cohort of both male and female cells
prior to publication, the notion that there may be male/female
differences in experimental outcomes is clearly not something
that should be dismissed out of hand.
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