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Sex differences in the biology of different organ systems and the influence of sex hormones in modulating health
and disease are increasingly relevant in clinical and research areas. Although work has focused on sex differences
and sex hormones in cardiovascular, musculoskeletal, and neuronal systems, there is now increasing clinical
evidence for sex differences in incidence, morbidity, and mortality of lung diseases including allergic diseases
(such as asthma), chronic obstructive pulmonary disease, pulmonary fibrosis, lung cancer, as well as pulmonary
hypertension. Whether such differences are inherent and/or whether sex steroids play a role in modulating these
differences is currently under investigation. The purpose of this review is to define sex differences in lung
structure/function under normal and specific disease states, with exploration of whether and how sex hormone
signaling mechanisms may explain these clinical observations. Focusing on adult age groups, the review ad-
dresses the following: 1) inherent sex differences in lung anatomy and physiology; 2) the importance of certain
time points in life such as puberty, pregnancy, menopause, and aging; 3) expression and signaling of sex steroid
receptors under normal vs. disease states; 4) potential interplay between different sex steroids; 5) the question
of whether sex steroids are beneficial or detrimental to the lung; and 6) the potential use of sex steroid signaling
as biomarkers and therapeutic avenues in lung diseases. The importance of focusing on sex differences and sex
steroids in the lung lies in the increasing incidence of lung diseases in women and the need to address lung
diseases across the life span. (Endocrine Reviews 33: 1–47, 2012)

I. Introduction
II. Sex Differences in Lung Structure and Function

A. Measurement of lung structure and function
B. Historical studies
C. Sex differences in prenatal and early postnatal lung
D. Sex differences in puberty and beyond

III. Sex Differences in Lung Diseases
A. Asthma
B. Atopy and allergic rhinitis
C. COPD and lung cancer
D. Fibrotic diseases
E. Pulmonary hypertension
F. Other conditions

IV. Sex Steroids in Lung Physiology and Pathophysiology
A. Sex steroid signaling
B. Upper and lower airways
C. Lung parenchyma
D. Pulmonary vasculature
E. Immune cells and function

V. Clinical Implications of Sex Differences and Sex Steroid
Signaling

VI. Future Directions
VII. Conclusions

I. Introduction

Sex differences in health and disease as clinical and re-
search issues have long been topics of interest, espe-

cially in cardiovascular structure and function (1–5), me-
tabolism (6–9), and cognition (10–15). Despite such
recognition, in 2001, the Institute of Medicine (IOM) pub-
lished an enlightening report (“Exploring Biological Con-
tributions to Human Health—Does Sex Matter?”; http://
www.nap.edu/openbook.php?isbn�0309072816), which
highlighted the importance of sex as a biological variable
(rather than an observational feature) with recommenda-
tions for including sex as a factor in clinical practice
norms as well as a topic of bench and clinical research.
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Abbreviations: ACh, Acetylcholine; AHR, airway hyperresponsiveness; AR, androgen re-
ceptor; ASM, airway smooth muscle; BEC, bronchial epithelial cell; BPD, bronchopulmo-
nary dysplasia; [Ca2�]i, intracellular calcium; CF, cystic fibrosis; COPD, chronic obstructive
pulmonary disease; DC, dendritic cell; DHEA, dehydroepiandrosterone; DHT, 5�-dihydrotes-
tosterone;DLCO,diffusingcapacity forcarbonmonoxide;EGF,epidermalgrowthfactor;EGFR,
EGF receptor; eNO, exhaled NO; eNOS, endothelial NOS; ER, estrogen receptor; FEF, forced
expiratory flow; FEV1, forcedexpiratory volume in1 sec; FRC, functional residual capacity; FVC,
forced VC; GPCR, G protein-coupled receptor; IFN, interferon; iNOS, inducible NOS; LPS, li-
popolysaccharide; 2ME, 2-methoxy estradiol; MHT, menopausal hormone therapy; MMP,
matrix metalloproteinase; NK, natural killer; NO, nitric oxide; NOS, NO synthase; NSCLC, non-
small cell lung cancer; OC, oral contraceptives; PAH, pulmonary arterial hypertension; PBMC,
peripheral blood mononuclear cell; Penh, enhanced pause; PF, pulmonary fibrosis; PH, pul-
monary hypertension; PR, progesterone receptor; RDS, respiratory distress syndrome; Th1, T
helper 1; Th2, T helper 2; TLC, total lung capacity; VC, vital capacity.
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These recommendations are reiterated in an article in the
journal Nature (497). Although the IOM report focused
on sex differences in several organ systems (other than the
reproductive system), there was surprisingly little atten-
tion paid to the respiratory system, i.e., the upper and
lower conducting airways and the lung parenchyma.

Inherent sex differences in the lung are apparent from
early in life and throughout the human life span. Both
clinical and basic research studies have examined sex dif-
ferences in lung structure and function in both health and
disease. Although some studies have focused on the likely
role of hormones in sex differences, others have explored
inherent physiological differences as well as sociocultural
factors. There is also considerable epidemiological evi-
dence for a role for sex in the incidence, susceptibility and
severity of a variety of lung diseases. Here, the healthcare
and financial burden of lung disease is certainly not trivial
(�35 million persons with chronic lung disease and
350,000 deaths in the United States alone in 2006; Amer-
ican Lung Association 2006 lung disease data), and it
highlights the importance of recognizing and studying sex
differences in lung anatomy and physiology. As an exam-
ple, Fig. 1 compares the average number of publications
per year that focus on “sex” and “heart” (or other terms

relating to the cardiovascular system) to “sex” and “lung”
(or other terms relating to the respiratory system). Al-
though research regarding influence of sex on lung dis-
eases is not as well studied as in the cardiovascular realm,
there appears to be a steady increase from year to year.
Accordingly, the major goal of this review is to highlight
this growth in research relating to sex and the lung. We
will largely address research on the adult lung, where most
of the past work has focused, with brief backgrounds on
prenatal, early postnatal, and prepubertal sex differences
in lung anatomy/physiology and the influence of sex ste-
roids. The reader will be referred to excellent and detailed
reviews by other investigators on these topics.

This review briefly introduces modern techniques and
parameters for clinical and bench-research assessment of
lung structure and function (defining common terms and
abbreviations; Section II). With a brief historical perspec-
tive, we will describe what is currently known regarding
inherent lung structure and function in the two sexes (fo-
cusing largely on the postnatal time period), and high-
lighting key life events involving large hormonal changes
such as puberty, pregnancy, and menopause. Subse-
quently, clinical data on sex differences in specific lung
diseases will be summarized (Section III), setting the stage
to address the roles of inherent sex differences, as well as
sex steroids in lung health and disease. We have focused on
diseases where sex differences have been recognized, with
the understanding that absence of sex difference does not
necessarily rule out a role for sex steroids influencing a
particular disease. However, considering the limited data,
we felt it important to at least highlight diseases where sex
steroid signaling could be implicated. Furthermore, these
diseases span different cellular and extracellular compo-
nents of the lung, and thus provide a rationale for dividing
the subsequent section (Section IV) along these lines. Here,
we discuss controversies not only in the epidemiology, but
also in the potential role of sex steroids as being beneficial
vs. detrimental. Nonetheless, Sections II and III will es-
tablish the importance of researching the lung from a sex-
specific perspective. Section IV will then systematically
examine what is known regarding expression and signal-
ing of steroid receptors in lung components, introducing in
vitro cellular studies, animal work, as well as examination
of human samples. The impact of sex differences and ste-
roid signaling on specific lung components in the disease
process will be discussed with the understanding that
many lung diseases involve multiple cell types. Finally, we
will provide commentaries on the importance of sex dif-
ferences and sex steroids in lung health and disease and
identify areas where more basic and clinical research is
needed (Section V). Given the increasing recognition of the
importance of sex steroids in the lung, it is only a matter

Figure 1.

Figure 1. Publications relating to sex and the lung. A PubMed search
was conducted to compare the number of articles published per year
related to sex differences in the lung vs. heart. Search terms (title,
abstract, and keywords) used were “sex” or “gender” along with
“heart, cardiac, vascular (not pulmonary)” to define the broad term
“heart” represented in the figure. The search was repeated with “sex”
or “gender” and search terms “respiratory, lung, airway, and
pulmonary,” which comprise the term “lung.” Searches were
conducted annually from 2005 to 2010 (for recent trends), and decade
searches 1985–1994 and 1995–2004 (with average numbers of
articles per year presented). Over the last two decades, there has been
a substantial increase in the number of publications related to sex and
lung, with tremendous increases in recent years. However, these
numbers remain substantially smaller than those involving sex and
heart. Nonetheless, the encouraging upward trend in studies illustrates
the recognition that visibility of and research on sex differences in the
lung needs to be enhanced. Within this subset is the additional
recognition of the role of sex steroids in lung physiology and
pathophysiology.
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of time before modulation of their signaling is consid-
ered a viable therapeutic option. Furthermore, if sex
differences in specific diseases are related to expression
or function of steroid signaling pathways, then perhaps
these pathways could serve as markers of disease risk,
severity, and/or outcome. These issues will be briefly
discussed (Section VI).

II. Sex Differences in Lung Structure
and Function

A. Measurement of lung structure and function
Evaluation of lung structure and function is an impor-

tant aspect of pulmonary research and medicine. Clini-
cally and in the human-based laboratory setting, several
methods are commonly used: spirometry, measurement of
lung volumes, and quantification of diffusing capacity.
Spirometry is the most common pulmonary function test
for measurement of volume and air flow rate during in-
halation and exhalation. Pneumotachographs generated
via spirometry are used to assess clinical conditions such
as obstructive pulmonary diseases [e.g., asthma, chronic
obstructive pulmonary disease (COPD), and restrictive
diseases, e.g., pulmonary fibrosis (PF), respiratory muscle
weakness]. Two important measurements in spirometry
are forced expiratory volume in 1 sec (FEV1) and forced
vital capacity (FVC). The ratio of FEV1 to FVC is a useful
parameter for distinguishing obstructive vs. restrictive
lung diseases. In general, decreased FEV1/FVC suggests an
obstructive condition, whereas a normal or even increased
ratio with substantial reduction in FVC is seen as a re-
strictive problem (16–18). Flow-volume loops, which in-
clude forced inspiratory and expiratory maneuvers, are
useful in determining static and dynamic obstructions to
airflow. Here, larger, less compliant airways with rigid
structures such as cartilage contribute significantly to
static resistance to airflow, whereas smaller more compli-
ant airways within the lung can dynamically vary in
resistance. Other parameters such as forced expiratory
flow (FEF) are calculated using flow-volume loops, and
these additional parameters are used to differentiate
between effort-dependent and effort-independent expi-
ratory airflow. Contractility or reactivity of the airways
is tested standardly using the methacholine challenge
wherein increasing concentrations of this bronchocon-
strictor agonist are provided by nebulization, and changes
in resistance to positive pressure inspiratory and expira-
tory airflow are measured. Concurrently, bronchodilator
testing is useful in determining the reversibility of airway
obstruction in diseases such as asthma or COPD. Mea-
surement of maximal inspiratory and expiratory pressures

is performed to determine causes of decreased vital capac-
ity (VC) or muscle strength. Measurement of lung volumes
complements spirometry. Common measurements include
total lung capacity (TLC), functional residual capacity
(FRC), and residual volume, which are used to distinguish
between disease types. Measurement of diffusing capacity
for carbon monoxide (DLCO) assesses gas exchange. Con-
sidering the long-standing testing and use of these mea-
surement techniques and parameters, scales for males and
females of different age groups are available, allowing for
comparisons between studies and equally effective detec-
tion of disease conditions in both sexes.

Within the bench laboratory setting, many of the tests
and parameters used in humans can also be applied to a
range of test animals. For example, a commonly used tech-
nique is the noninvasive unrestrained (or restrained)
whole body plethysmography where animals are enclosed
in rigid chambers and their breathing patterns, tidal vol-
umes, and other parameters are measured using pneu-
motachometers. A useful derived parameter commonly
used to report resistance to inspiratory/expiratory airflow
is enhanced pause (Penh) (19, 20), with the caveat that
there is disagreement regarding the physiological variables
that are represented by Penh (some investigators believe
that Penh may reflect sensory nervous activity or airway
irritability rather than actual changes in airway resis-
tance). A second, and complementary but invasive tech-
nique to measure lung function is by direct measurement
of resistance and compliance using an endotracheal tube
or tracheostomy in an anesthetized (sometimes paralyzed)
animal. Both the noninvasive and invasive approaches are
amenable to the methacholine challenge test with bron-
chodilator response. In small animal studies, a common
procedure after invasive or noninvasive measurement of
airwaymechanics is the collectionofbronchoalveolar cells
and fluid using lavage, which can then be analyzed for
relative amounts of immune cells (neutrophils vs. macro-
phages vs. eosinophils) or cytokines and other inflamma-
tion mediators.

At the tissue and cell levels, gross structures can be eval-
uatedinlungsthatare inflatedatstandardizedpressures[e.g.,
25 mm Hg in the mouse (21)] and fixed (e.g., formalin or
paraformaldehyde) or rapidly frozen. Changes in airway or
pulmonary vascular structures are typically determined in
sectionsprocessedvia immunohistochemistry,hematoxylin-
eosin staining, or other histological procedures to identify
specific cell types. Here, standards have been introduced
for measurement of airway epithelial vs. smooth muscle
dimensions, and alveolar branching and septation, thus
allowing comparison across studies (21). Immunostaining
allows for semiquantitative evaluation of expression and
localization of proteins within different parts of the lung
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(22). Many studies use gel electrophoresis or PCR of
whole lung samples to determine changes in protein or
mRNA. However, the heterogeneity in cell type and cell-
specific differences in expression of the same protein
within the lung frequently limit interpretation. Other tech-
niques such as fluorescence immunohistochemistry fol-
lowed by digital imaging (e.g., confocal microscopy) can
be used to provide semiquantitative estimation of expres-
sion and localization of proteins within specific parts of
the lung (22). A relatively new technique that may be help-
ful is laser capture microdissection (23, 24) wherein spe-
cific areas (e.g., epithelium vs. smooth muscle vs. endo-
thelium) or even single cells can be excised from lung
sections using a laser and then analyzed for mRNA or
protein (23, 24).

B. Historical studies
In the mid 19th century, a study by Hutchinson (25)

identified sex differences in breathing mechanics using ba-
sic spirometry. In the few women studied, breathing ma-
neuvers equivalent to VC measurements were attrib-
uted to rib muscle contractions in women, compared to a
diaphragm-based effort in men. Rib-based breathing in
women was attributed to accommodation for impaired
diaphragmatic function in the pregnant woman. In con-
trast, Ellis (26) found that VC in women, when corrected
for height, was smaller, attributing this to presumed lower
metabolic rate of women and thus less need for larger
breaths. In perhaps the first systematic study of hormonal
effects on respiratory parameters (although not the pri-
mary goal of the study), Ott (27) performed daily mea-
surements of VC, respiratory muscle force, and other char-
acteristics in healthy women over several months and
menstrual cycles. A complex index representing “func-
tional energy” was found to be at approximately 50%
midcycle, peaking to 75% before menstruation, and then
ebbing substantially after menstrual bleeding. These early
studies are described in more detail in a recent review by
Becklake and Kauffmann (28).

C. Sex differences in prenatal and early postnatal lung
The lung is one of the few organs that continue to de-

velop after birth, up to 2–4 yr of age in humans (28–30),
with continued growth and changes in lung complexity
well into adolescence (28, 29, 31). Sex differences in lung
development and maturation have been observed as early
as 16–24 wk gestation (32, 33). For example, the number
of bronchi is fewer in female fetuses compared with males,
but female fetuses mature faster (34). Later in gestation,
surfactant is produced earlier by female fetuses and is
thought to help maintain patency of small airways (35,
36). Neonatal females have higher expiratory flow rates

compared with male neonates when corrected for size
(37), a comparison that remains true throughout their life
span (see Section II.D). Table 1 summarizes sex differ-
ences in lung anatomy and physiology over the course of
prenatal lung development and postnatal growth into
adulthood. The reader is referred to other in-depth reviews
on this fascinating topic (28, 30, 38–42). In addition to
inherent sex differences in the lung in utero, maternal
and/or fetal sex steroids can also have effects. The reader
is referred to excellent in-depth reviews on the complex
role of steroids in the developing lung (28, 39, 43, 44).

The clinical relevance of intrinsic and steroid-induced
sex differences in lung development lies in the greater sus-
ceptibility of premature male infants to respiratory dis-
tress syndrome (RDS; Section III.F) (36, 45), presumably
due to decreased surfactant production and larger lung
size compared with the premature female infant. Prema-
ture male infants are also more susceptible to broncho-
pulmonary dysplasia (BPD; see Section III.F). Further-
more, early establishment of differences in lung structure
and function may underlie or influence the course of dis-
eases such as asthma in childhood and in adults (see Sec-
tion III.A).

Early postnatal lung development and maturity occurs
predominantly via exponential increases in number and
size of alveoli (29, 46). At birth, the female lung is smaller
than that of the male, with fewer respiratory bronchioles
(30, 47), but not the number of alveoli per unit area. Ac-
cordingly, the total number of alveoli and surface area are
actually greater in males throughout childhood.

D. Sex differences in puberty and beyond
During childhood and adolescence, female airways and

lung parenchyma grow proportionally, whereas in males
airway growth lags behind the growth of the lung, thereby
exhibiting disproportionately fewer alveoli for the num-
ber of airways in boys (43, 48, 49), a concept called dys-
anapsis (for details, see Refs. 28, 40, 47, 50, and 51).
Briefly, dysanapsis suggests that airway length, not diam-
eter, determines FEF rates. Thus, larger lungs (e.g., male
lungs) would have longer conducting airways and would
thus be at a disadvantage during expiration [reflected by
a higher dysanapsis index as determined by Mead (50)].
This concept has been confirmed by several lines of evi-
dence based in lung morphometry, physiological measure-
ments, and clinical evaluations (28, 40, 47, 51). The clin-
ical and functional significance lies in methods to
normalize lung function for differences in lung size, espe-
cially in the prepubertal period when growth rates for boys
and girls differ substantially.

The proportional growth of the airways and lungs in
females results in lower specific airway resistance and fa-
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cilitates larger FEF rates (37). However, when somatic
growth has ceased, VC, TLC, and peak flows are larger in
males compared with females of equal height, although
females still have larger expiratory flow rates (28, 52).
Assuming that the original finding of Hutchinson (25)
(Section II.B) of greater diaphragmatic contribution in
men is valid, the contribution of respiratory muscles could
be a confounding factor. During adolescence, males gen-
erate higher respiratory pressures than females at all lung
volumes, which is attributed to the influence of testoster-
one and the changing shape of the thorax and respiratory
muscles during puberty (52). However, such effects cannot
compensate for the higher specific airway resistance in men.

Sex differences in lung size of neonates and prepubertal
children, normalized for height, are maintained through
the greater pubertal growth spurt of girls (41, 47). How-
ever, the greater effort-independent expiratory flow rates
observed in prepubertal girls are less obvious in young
women where the ratio of residual volume to TLC is in-
creased (42) such that expiratory flow rates normalized to
TLC are comparable between the sexes. Age-related in-
creases in FVC occur more in men in their early postpu-
bertal years, partly due to the greater respiratory pressures
generated by males via a male sex steroid effect (52).
Nonetheless, sex differences in the dysanaptic growth of
the airways vs. lungs are maintained such that in adult-

TABLE 1. Influence of sex steroids on the lung at different life stages in humans

Age/time frame Lung anatomy and physiology Observed sex difference Refs.

16–26 wk gestational age
(canalicular phase of
lung development)

Fetal breathing movements; bronchial lumens
enlarge; vascularization of lung tissue.
Respiratory bronchioles and alveolar ducts
develop from terminal bronchioles (wk 24).

Females exhibit mouth movements earlier
than males.

32

26–36 wk gestational age
(saccular phase of lung
development)

Establishment of blood-air interface
(respiratory epithelium with type I and II
alveolar cells); surfactant production;
terminal sacs form and expand; overall
increase in lung volume.

Females produce surfactant earlier than
males.

35, 36

36 wk (first postnatal
week)

Alveoli form and multiply; increased FEF and
decreased airway resistance.

Females have smaller lungs and lower
specific airway resistance than males.

37, 41, 42

Up to 1 yr of age Lung grows linearly with age and airway
resistance increases rapidly; alveolar
multiplication continues.

Females have higher FEF rates than
males.

32, 37, 38, 42

Prepubertal childhood
years (1–10 yr)

Alveolar multiplication continues (up to 2 yr);
lung growth is dysanaptic.

Females have larger airways in relation to
lung size and lower specific resistance
than males.

30, 34, 491

Female lungs are smaller overall as
compared to males.

37, 42

Large airways grow proportionately to
lung in females, this growth lags in
males. Smaller airways grow faster in
females as compared to males.

48

Adolescence, puberty
(10–18 yr)

Lung growth increases with age (FVC and
TLC).

Female growth velocity for FVC peaks
sooner than males. Specific airway
resistance decreases in females up to
18 yr but not in males. Higher effort
independent flows in women than
men.

37, 42, 52, 492

Adults (20–70 yr) Peak expiratory flow, FEV1, and
transpulmonary pressure decrease with
age; decrease in lung elastic recoil, vital
capacity, chest wall compliance; increased
residual volume and FRC; overall increase
in airway conductance with age.

Males have higher PEF than women;
higher airway conductance in males
than females; no observed differences
in elastic recoil or chest wall
compliance.

56, 57, 87, 493, 494

Pregnancy (8–36 wk) No changes in FVC, FEV1, VC, airway
resistance, or lung compliance throughout
term (12 wk to 4 months postpartum).

53, 54

Pregnancy (third trimester) TLC and FRC decreased at 36 wk gestation;
increase in inspiratory capacity in third
trimester; increase in specific airway
conductance (returns to normal 5 wk
postpartum); 50% reduction in total
pulmonary resistance.

53, 54

PEF, Peak expiratory flow.
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hood, FEV1/FVC is higher in women (52), which should
place them at an advantage in terms of respiratory me-
chanics and airflow. The importance of these differences
lies in sex differences in diseases such as asthma in the
prepubertal period and changes in incidence and severity
that occurs after puberty (discussed in Section III.A).

Although sex differences in lung function noted in the
postpubertal period are maintained during adulthood,
pregnancy marks a unique situation in women where an-
atomical changes of the uterus affect the diaphragm and
thorax, while resulting physiological changes also take
place. TLC and FRC both decrease in the third trimester,
due in part to fetal orientation compressing the abdominal
contents into the thorax (53, 54). Despite these changes,
FVC, FEV1, or VC are not decreased due in part to in-
creases in inspiratory capacity and a 50% decrease in pul-
monary resistance (54). The relevance of these changes lies
in the modulation of asthma symptoms and severity dur-
ing pregnancy, although such anatomical and functional
changes alone are not entirely contributory (see Section
III.A).

As adults age, independent of disease pathology, there
is a loss of lung function. Lung elastic recoil and elastic
recoil of the large airways decreases, along with a decrease
in alveolar air volume with age, whereas the relative
amount of connective tissue in the lungs increases (55, 56).
These anatomical changes lead to a decrease in maximal
expiratory flow rate for both men and women; however,
the rate of decrease in lung elastic recoil and maximal
expiratory flow rates tends to be greater in men compared
with women (57, 58). Additionally, women are older at
the onset of these decreases in lung function. The observed
sex difference in declining lung function may be a result of
smaller overall airways of women having a beneficial ef-
fect on lung mechanics or a negative aftermath of dys-
anaptic growth in boys from the prepubertal period. Thus,
throughout adulthood, the female lung should be situated
to function better than the male lung. However, this sim-
plistic expectation does not appear to hold true, as dis-
cussed in Section III.A with reference to diseases such as
asthma.

III. Sex Differences in Lung Diseases

As discussed in Sections II.C and II.D, from infancy
through adulthood, intrinsic sex differences in lung anat-
omy and physiology are present. Although such intrinsic
differences could contribute to the pathophysiology of
lung disease of prematurity (e.g., RDS and BPD; Section
III.F), lung diseases of children and adults are modulated
by socioeconomic, cultural, environmental, and behav-

ioral factors. Regardless, clear sex differences in the pre-
sentation of diseases such as asthma are apparent through-
out the human life span. Before puberty, more boys than
girls are diagnosed with asthma, whereas the opposite is
true after the onset of puberty during the reproductive
years in females. Additionally, there is a staggering in-
crease in the number of females that are being diagnosed
with COPD, whereas the number of men being diagnosed
has stabilized. Although much of this change in COPD
statistics may be a result of increased or maintained num-
bers of female smokers (compared with a decrease in the
number of male smokers), there are data suggesting that
women may also be more susceptible to cigarette smoke,
additionally contributing to this sex disparity in COPD as
well as lung cancer. Overall, this collection of epidemio-
logical data underscores sex differences in the lung and
raises the issue of what role inherent differences in lung
structure vs. sex hormones play in modulating lung health
and disease.

In Section III, we will summarize the current state of
clinical knowledge on sex differences in several important
lung diseases (especially in adults), providing a basis for
considering both intrinsic differences in lung structure and
function in males vs. females as well as the potential con-
tribution of sex steroids. Here, it is important to emphasize
that it is not always possible to clearly separate intrinsic vs.
sex steroid-induced differences; indeed, in the adult lung,
it is likely that there is a complex and incompletely un-
derstood interaction between these two aspects. Further-
more, considering the multifactorial nature of most lung
diseases and the involvement of multiple cell types, dif-
fering sex steroid effects on specific cell types in the lung
make the issue even more complex. Therefore, in Sec-
tion III, we focus on aspects of lung diseases that are
likely due to intrinsic sex differences in lung structure or
function, as well as aspects likely involving the overall
effect of sex steroids (where known). In Section IV, we
proceed to dissect out the potential contribution of sex
steroid effects on specific lung cells contributing to the
diseases of Section III.

A. Asthma
Asthma is an inflammatory disease of the airways

that is likely multifactorial in origin and involves both
intrinsic and environmental factors. Hallmark symp-
toms of asthma include exaggerated airway narrowing
in response to endogenous bronchoconstrictors [e.g.,
acetylcholine (ACh)] as well as environmental stimuli
(e.g., pollen, cigarette smoke), resulting in expiratory air-
flow limitation and accompanying dyspnea and wheezing
(59–65). Despite substantially improved understanding
of the pathogenesis of asthma, as well as development and
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implantation of a large variety of drugs targeting different
mechanisms, there continues to be a global increase in the
prevalence, morbidity, and even mortality of asthma over
the past few decades (�300 million people worldwide;
World Health Organization, Asthma fact sheet no.
307), with the prevalence and severity of pediatric
asthma increasing at even higher rates compared with
adults or the overall population (66 – 68). There is now
epidemiological evidence for sex differences in asthma
and related diseases that may be due to biological sus-
ceptibility, age-related changes in the hormonal milieu,
environmental exposures, as well as healthcare and so-
cioeconomic factors (69, 70).

Although a number of factors can result in asthma,
early events in life may be contributory. With the rates of
preterm birth rising, but survival increasing, respiratory
morbidity of children born prematurely is high, with poor
respiratory and pulmonary function persisting through
adulthood. Children with classical BPD (typically born
before 1990) who may now be adults demonstrate both
structural and functional lung problems (71–77). For ex-
ample, preterm birth at less than 26 wk is associated with
reduced expiratory flow, increased respiratory symptoms,
and medication use at 6 yr of age and, as recently dem-
onstrated, to 11 yr of age (prepubertal) (78, 79). Although
the use of prenatal steroids and surfactant have reduced
the incidence of RDS and classical BPD, a newer form of
BPD involving alveolar and vascular dysmorphogenesis
still occurs (see Section III.F). It appears that both popu-
lations (classical and new BPD) may be at the same risk for
childhood respiratory problems including asthma. The
reader is referred to several recent reviews on prenatal,
perinatal, and early postnatal causes of childhood and
adult asthma (71, 80–86).

Regardless of gestational age at birth, in prepubertal
children, male airway growth lags behind that of female
airway growth, suggesting an inherent risk factor for
greater asthma in male children (43, 49, 87). During child-
hood, more boys than girls are diagnosed with asthma. A
confounding factor may be the relative underdiagnosis
and undertreatment of girls with asthma (88, 89). Al-
though large-scale systematic studies have not been per-
formed to determine the reasons underlying the underdi-
agnosis of asthmatic girls, lower activity levels compared
with age-matched boys (and thus less frequent triggering
of asthma exacerbations) may be contributory. Further-
more, a single study in Swiss children (90) suggested a
sex-based bias in recognition of symptoms in girls by
healthcare providers, unless the severity and reporting of
symptoms was comparable to that of boys [colloquially
referred to as Yentl syndrome in the context of coronary
artery disease (91)]. Nonetheless, it is likely that asthma

symptoms are indeed greater in boys. The disease presents
in infancy within the first few years of life. Male gender is
a major risk factor for the development of asthma at this
early age (92, 93) and the ratio of boys to girls is approx-
imately 2:1 before the age of 5 yr (94, 95), with the risk of
chronic asthma being 4-fold greater for boys until the age
of 14. Here, it is important to emphasize that both male sex
(biological factors) and male gender (socio-constructs re-
lating to outdoor play and indoor pet exposure) are factors
for the development of asthma. Thus, sex vs. gender as
factors may be difficult to separate in this instance. None-
theless, these epidemiological data are consistent with the
concept of structural dysanapsis and suggest that, in the
prepubertal setting of low sex steroid levels, inherent
structural differences may be more important to sex dif-
ferences in asthma in childhood.

Male predominance in asthma persists until the onset of
puberty (ages 10–14) when the number of boys and girls
with this disease is approximately equal (88, 96). Inter-
estingly, puberty results in a switch in the sex distribution
of asthma. After puberty, during the reproductive years,
approximately twice as many women as men have asthma
(93, 97, 98). The switch in sex ratio for asthma at the time
of puberty may be partially attributable to pubertal growth
patterns such that female airway and lung sizes are smaller
than for males. However, size (i.e., inherent structural dif-
ferences) alone is not a sufficient explanation, and there is
now clear evidence that sex hormones influence asthma de-
velopment and severity. Girls who undergo early menarche
(before the age of 12), have twice the risk of developing
asthma after puberty compared with women in whom
menarche occurs later (99, 100). The underlying mecha-
nisms for this increased risk or incidence have not been
examined. However, as discussed in Section IV, the pleio-
tropic effects of female sex steroids (particularly estro-
gens) on airway cells may be contributory.

In adult women, the cyclical variations in sex steroid
levels with the menstrual cycle may also influence
asthma symptoms. However, the temporal correlation
between asthma symptoms and steroid levels does not
provide a simple answer to whether estrogen and/or
progesterone improve or worsen asthma. Approxi-
mately 40% of women with asthma will experience pre-
menstrual asthma, i.e., changes in severity at specific
times during their menstrual cycle (101–103). These
changes have been documented to occur in the luteal
and late-luteal phase of the menstrual cycle when there
are large fluctuations in the levels of progesterone and
estrogen. However, it should be noted that if anything,
worsening of symptoms usually occurs when estrogen lev-
els are on the downswing, suggesting that estrogens may
be normally protective for asthma symptoms. Of course,
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an alternative explanation is that elevated estrogen levels
in the preceding days (i.e., midcycle) may manifest as
worsening of symptoms after considerable delay, which
would make estrogens detrimental to airway function (see
Section IV). Regardless of the underlying mechanisms,
changes in symptoms often lead to increased bronchodi-
lator use and increased hospitalization (93, 101, 104).
Some women with mild to moderate asthma, but not with
severe asthma, have found relief of premenstrual asthma
exacerbations with the use of oral contraceptives (OC)
which suppress large fluctuations in circulating hormones
(105, 106).

These effects of exogenous estrogens modulating pre-
menstrual asthma negate a simple explanation of benefi-
cial vs. detrimental effects of sex steroids on asthma, un-
derscoring the multifactorial nature of such diseases and a
potentially complex short- or long-term interplay between
sex steroids and underlying pathophysiological mecha-
nisms. Some studies suggest that cyclical variations in
asthma severity are partially attributable to abnormal or
absent up-regulation of �2-adrenoceptors in circulating
lymphocytes of menstruating asthmatic women during the
late luteal phase; however, increased responsiveness of
lymphocytes to cAMP may compensate for the lack of
receptor up-regulation in these women (107). Further-
more, exhaled nitric oxide (eNO) levels (a marker of in-
flammation) increase in nonasthmatic women (108) dur-
ing the luteal phase, suggesting that premenstrual asthma
involves increased airway inflammation (102, 109, 110).
A number of other mechanisms have been proposed in-
cluding altered airway contractility, progesterone effects
on bronchodilation, and altered immune function. Cur-
rent knowledge on these important topics is presented in
greater detail in Section IV.

Women with asthma face another challenge of sex ste-
roid influence with pregnancy. Asthma is the most fre-
quent respiratory disease experienced by pregnant women
[as many as 8% of all pregnant women have asthma (111,
112)]. Estrogen and progesterone concentrations rise
steadily during pregnancy and reach peak levels during the
third trimester (93). Despite the number of pregnant
women with a diagnosis of asthma, only approximately
10% experience acute asthmatic exacerbations during
pregnancy as compared with the near 40% of women ex-
periencing premenstrual worsening (94, 113). It has been
reported that approximately one third of women with
asthma show an improvement of symptoms in their third
trimester, whereas another third demonstrate worsening
of their asthma, and a final third show no changes (114,
115). Here, women with severe asthma predominantly
show worsening of asthma symptoms during pregnancy
compared with women with mild to moderate asthma

(115, 116). It is interesting that in both premenstrual vari-
ations and during pregnancy, severely asthmatic women
appear to have worsening of symptoms, are less responsive
to bronchodilator therapy than mild to moderate asth-
matic women, and do not benefit from OC in alleviating
premenstrual exacerbations (106). Whether female sex
steroids contribute to this recalcitrant situation, or
whether severe asthma is a different entity altogether
(117–119) remains to be determined. An interesting ca-
veat here is the limited data suggesting that the sex of the
fetus can influence severity of maternal asthma symptoms.
Androgens have antiinflammatory properties, and thus
male fetuses may protect women prone to asthma exac-
erbations compared with female fetuses (93, 112). How-
ever, other studies have found that the sex of the fetus has
no effect on maternal asthma severity (120). Separately,
progesterone is known to be a respiratory stimulant and
may have bronchodilatory properties (121, 122) (see Sec-
tion IV). However, the lack of consistent alleviation in
asthma symptoms across pregnant women with preexist-
ing asthma suggests the need to explore other mechanisms
that could be contributory.

After the shift toward increased incidence and severity
of asthma in women after puberty, the next major change
occurs at menopause. Menopause is generally character-
ized by a hormonal shift consisting of high levels of FSH
and LH and low levels of estrogen and progesterone (123,
124). The sex ratio for asthma development decreases
around the age of menopause and approaches unity, in-
dicating no sex difference in asthma presentation in this
age range. Studies have shown that the peak in adult
asthma exacerbations in women with preexisting disease
occurs at approximately 50 yr of age, the median for onset
of menopause (125, 126). In women with preexisting
asthma, menopause generally leads to more frequent ex-
acerbations (suggesting that in premenopausal years sex
steroids may have been protective); however, there is a
slight decrease in the number of reported asthma-related
hospital admissions in women more than 50 yr old as
compared with women 20–50 yr of age (124). Further-
more, postmenopausal women have a decreased risk of
developing de novo asthma compared with age-matched,
premenopausal women (127). Although these data would
again suggest a role for sex steroids on changes in asthma
exacerbations and severity at the time of menopause, as
with pregnancy, a simple deleterious vs. protective role for
female sex steroids cannot be easily assigned.

Occurrence of asthma after menopause is generally
very severe in nature and requires aggressive therapy in-
cluding high doses of oral corticosteroids (128). Post-
menopausal asthma also generally presents without a fam-
ily history and without atopy, although chronic sinusitis is
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often observed in conjunction with exacerbations (129).
In postmenopausal women with asthma, low serum levels
of FSH and LH with high levels of 17�-estradiol were
detected, compared with nonasthmatic postmenopausal
women (130) as well as age-matched women with preex-
isting disease (131).

Menopausal hormone therapy (MHT) in women [used
by up to 60% of postmenopausal women (132)] has con-
founding effects on asthma development and airway dis-
ease (133). In general, use of MHT, specifically estrogen,
increases the risk of developing asthma, as well as increas-
ing asthma symptoms, in a dose-dependent manner (127,
134). One of the largest studies, the U.S. Nurses Health
Study (1995–2004), prospectively examined MHT use
and postmenopausal asthma onset. In this study, estrogen
and estrogen-progesterone combination posed similar
risks to the development of asthma, but not COPD (135).
A similar, more recent study, although corroborative for
the estrogen MHT effects, found no increased risk for new
asthma onset in the combined estrogen-progesterone
group (134). Taken together, these data suggest that in-
creasing levels of estrogen, either endogenously or exog-
enously, can increase asthma symptoms and the risk of
asthma onset.

The above discussion largely focused on age-related
changes in asthma in women. However, it is important to
recognize that incidence/severity of asthma in men can
also change, albeit not to the same extent. Indeed, in men,
severity of asthma is relatively stable from puberty until
later in life (e.g., �50 yr) when decreasing serum testos-
terone levels may contribute to an increase in asthma (136,
137). Taken in combination with the reversal in male:
female ratio for asthma at puberty, these data would sug-
gest that testosterone may be beneficial in asthma. On the
other hand, a recent study found no correlation between
hypogonadism in aged men and asthma (138). Although
much research on asthma has focused on the effects of
female sex steroids, little has been reported on the effects
of exogenous androgens in alleviating asthmatic symp-
toms. In a small study, testosterone (10 mg/d for 5 d) was
found to improve symptoms in 88% of women suffering
from premenstrual asthma (139). Female patients suffer-
ing from status asthmaticus found rapid, acute relief
(within 20 min) with a combined testosterone-gonadotro-
pin injection (12.5 mg, 500 IU, respectively) (139). Al-
though these limited data are from relatively old studies,
they do suggest that increased androgen levels may be
beneficial in both males and females. Further work is
needed to determine the underlying mechanisms and the
potential for androgen therapy as an acute alternative
therapeutic option in cases of severe asthma. In Section IV,
we discuss current understanding of androgen effects on

different cellular components of the lung that may con-
tribute to diseases such as asthma.

B. Atopy and allergic rhinitis
Atopy is defined as the tendency to exhibit an adverse

IgE response to specific allergens or to show increased
responsiveness, measured in wheal size, to skin prick tests
(140) (with the caveat that skin reactivity does not always
correlate with elevated IgE levels). The relevance of atopy
lies in the evidence that skin prick tests correlate with al-
lergic rhinitis, whereas elevated IgE levels are a predictor
for allergic asthma (141, 142). Furthermore, allergic sen-
sitization to food can be an underrecognized risk factor for
asthma (143).

In general, atopy is more prevalent in prepubertal boys
compared with girls, as are asthma and allergic rhinitis
(140, 144). This sex difference may be due in part to dif-
ferences in environmental exposure between girls and
boys, reflecting outdoor and recreational activity patterns
(145). However, even after puberty, when there is a sex
reversal in the prevalence of asthma (Section III.A), men
continue to exhibit a similar, if not greater, prevalence of
atopy compared with women (146, 147). In contrast,
some reports suggest that more women present with atopy
after puberty when compared with men (148). This dis-
crepancy in the prevalence of atopy may be attributable to
differences in population selection criteria between stud-
ies, or to menstrual status of women included in the later
study. There is a notable decrease in atopy with age for
both males and females, but this is most pronounced in
women with preexisting disease after the onset of meno-
pause (149).

At birth, both boys and girls have relatively similar
levels of cord blood IgE. However, serum IgE levels rise
more rapidly in boys at an early age, contributing to the
increased incidence of prepubescent atopy (150). Con-
versely, women show a sharp decline in serum IgE levels
during puberty (141). Males continue to have higher IgE
levels than women for every decade (141), although these
levels decline steadily in both men and women with age
(151). Although males and females with allergic asthma
have higher IgE levels than nonasthmatics, male asthmat-
ics have consistently higher IgE levels compared with fe-
males (149, 150). Interestingly, women who use OC have
significantly higher IgE levels than nonusers, albeit signif-
icantly less than those detected in males (149). Women in
the periovulatory phase (cycle d 10–20) also show signif-
icantly lower IgE levels than women in other phases of the
menstrual cycle (141). Increased IgE levels are associated
with increased risk of eczema, which carries a female pre-
dominance in adults (152) and correlates strongly with the
incidence of asthma and allergic rhinitis (153). Accord-
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ingly, these patterns in atopy and IgE may reflect sex dif-
ferences in allergic diseases such as rhinitis and provide
clues to underlying mechanisms not only for rhinitis but
for asthma as well.

Allergic airway inflammation is marked by increases in
eNO and may be a surrogate measure for airway eosino-
philia (154). eNO has been found to be generally greater
in men compared with women, in both normal subjects
and those with atopy (155), corresponding to lower eo-
sinophil counts in women with allergies (156). However,
estrogen enhances adhesion of eosinophils to nasal mu-
cosa vasculature as well as eosinophil degranulation,
whereas testosterone attenuates this response (157). Ad-
ditionally, there is a stronger correlation of airway eosin-
ophil count and asthma in women than in men, suggesting
that women may be generally more sensitive than men to
a given level of eosinophilia (149).

It is thought that estrogens are involved in the produc-
tion of cytokines as well as triggering T helper 2 (Th2)-
dominant immune response (158, 159) (see Section IV.E
for more detailed discussion). Progesterone may also pro-
duce Th2-dominant cytokines including IL-4 (160). Es-
trogen and progesterone are both implicated in degranu-
lation of eosinophils (161). In contrast, testosterone has an
opposing effect on the immune system (162, 163). It is
well-recognized that a majority of immune diseases ex-
hibit a female predominance; however, the role of sex ste-
roids in the incidence and number of exacerbations in
atopy and other diseases is still unclear. Regardless, the
above, albeit complex, summary highlights the need for
recognition and identification of sex-specific factors in
atopy and allergic diseases relevant to the airways and
lungs.

From the discussion above, it appears likely that in ad-
dition to inherent sex differences, sex steroids play a mod-
ulatory role in a range of allergic airway diseases. The role
of sex steroids has been examined in animal models of
asthma (44, 164–168). However, data from these studies
are not entirely consistent with the clinical data in humans.
Female mice are more susceptible to airway disease (e.g.,
induced using ovalbumin sensitization and challenge)
compared to males (169), but they display higher IgE lev-
els, greater bronchiolar inflammation, and relative resis-
tance to glucocorticoid (166, 170, 171). In these animal
models, androgens appear to have a protective role, with
estrogens being actually proinflammatory. For example,
castration in males exacerbates disease (171), whereas
ovariectomy or estrogen receptor (ER) blockade in fe-
males alleviates it (reversed by exogenous estrogens)
(172). However, in contrast to the expected bronchodila-
tory effects, exogenous progesterone worsens allergic air-
way disease in mice (173). An important aspect of these

findings that only complicates interpretation is the seem-
ingly opposing effect of estrogens on airway inflammation
vs. airway reactivity (the two elements of diseases such as
asthma). In contrast to the findings of enhanced inflam-
mation, estrogens appear to protect against airway hy-
perresponsiveness (AHR) (174, 175) with the absence
of estrogens (ovariectomy) or ER signaling (knockout
mouse) resulting in lower responsiveness to bronchoc-
onstrictor stimuli (methacholine challenge). In rats, es-
tradiol blunts ACh-induced bronchoconstriction, po-
tentially via enhanced epithelial acetylcholinesterase
activity or enhanced nitric oxide (NO) signaling (176). ER
seem to be involved here because mice lacking ER show
spontaneous AHR, with increased neuronally derived
ACh (168). Conversely, AHR is greater in male mice but
may be due to androgen effects on neuronally mediated
airway reflexes rather than direct effects on the airway
itself (177). Overall, these animal data verify a role for sex
steroids in asthma as observed in humans. However, the
discrepancy between airway inflammation vs. responsive-
ness suggests that comparison of animal vs. human data,
acute vs. chronic alterations in sex steroid levels or action,
and the parameters being measured (reactivity vs. inflam-
mation) should be done with caution. Furthermore, it is
important to consider the differential effects of sex ste-
roids on specific cell types (e.g., epithelium vs. smooth
muscle) and species differences therein that could contrib-
ute to discrepant results in the overall effects of steroids on
airway function. These issues are discussed in more depth
in Section IV.

C. COPD and lung cancer
Despite the recognized harm of both active smoking

and passive exposure (secondhand smoke), diseases
caused by environmental tobacco smoke exposure are on
the rise worldwide. In this regard, secondhand smoke can
affect all age groups from the fetus (via placental transfer
of toxic components in cigarette smoke) through the aging
adult. In utero exposure to cigarette smoke toxins due to
maternal smoking carries independent risk for reduced
postnatal lung function (178–181) as well as continued
respiratory problems such as asthma, wheezing, and re-
spiratory infections in young children (182). Whether sex
differences exist in the effect of antenatal cigarette smoke
exposure is not clear. However, if cigarette smoke impairs
bronchiolar development early in gestation, this will be
limiting to airway performance because the number of
bronchi are set by birth (unlike postnatal growth of alve-
oli; Table 1). Considering sex differences in the number of
bronchi and the concept of dysanapsis (Section II.D),
males may be particularly susceptible. Indeed, maternal
smoking during pregnancy, which is associated with sig-

10 Townsend et al. Sex and the Lung Endocrine Reviews, February 2012, 33(1):1–47

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article-abstract/33/1/1/2354750 by guest on 07 April 2020



nificantly reduced FRC and expiratory flow rates in the
newborn, has greater effects on male infants (180). Such
reduced expiratory flow rates can persist throughout
childhood and even early adulthood (183). Thus, it is
likely that early exposure to cigarette smoke may set the
stage for lifelong lung disease, especially in males. How-
ever, in the absence of longitudinal cohort studies in an-
imals or in humans from early postnatal development
through senescence, a definite link between fetal exposure
to cigarette smoke components and COPD has not been
established. Here, it would be of interest to explore sex
differences in the progression toward COPD in offspring
of mothers who smoked (or were exposed to secondhand
smoke) during pregnancy or during the postnatal period.

COPD is a disease characterized by symptoms in-
cluding progressive dyspnea upon exertion that does
not reverse with bronchodilator therapy and is mostly
unresponsive to steroids (184 –186). It involves emphy-
sematous destruction of lung parenchyma and narrow-
ing of the airways (187). COPD has long been thought
of as a disease of the male smoker. However, there has
been an alarming rise in the number of women diag-
nosed with COPD every year compared with men (185,
188), with the number of deaths from COPD being
higher in women than in men in both the United States
and Canada for the first time (185, 189). Social and en-
vironmental factors are likely contributors in this change
in diagnosis rate. Women are smoking more than ever,
whereas more men are quitting smoking. Approximately
25% of the cigarettes sold in the United States were sold
to women in the 1980s, and this number has stayed rela-
tively stable; however, the number of adolescent females
who are smoking is increasing steadily (188, 190, 191).
Furthermore, physicians are becoming increasingly com-
fortable in diagnosing COPD in women, whereas previ-
ously women were commonly given the diagnosis of
asthma, even when decreased lung function did not resolve
with bronchodilator therapy (192).

Although socioeconomic and cultural factors may par-
tially explain the sex difference in COPD at present,
women may have an inherently higher susceptibility to
cigarette smoke than men (193–195). Women typically
develop symptoms of the disease at a younger age than
men and also have a substantially smaller pack-year smok-
ing history when compared to men. When normalized for
pack-years smoked, the rate of lung function decline in
women is faster than that of men, with women losing as
much as 10 ml/pack-year and men losing 8 ml/pack year
(193, 196). In this regard, it is interesting that whereas the
female infant displays less susceptibility to maternal smok-
ing (180), the adult female displays greater susceptibility.
Here, it is not known whether female sex steroids play a

role in modulating susceptibility, or alternatively whether
male sex steroids are protective.

In addition to smokers with COPD, women are the
majority in a subsection of COPD cases involving non-
smokers or never-smokers (excluding those with �-1 an-
titrypsin deficiency, a genetic risk factor for early devel-
opment of COPD). For example, one study found that
nearly 80% of those with early-onset COPD were non-
smoking females (197). This corresponded with another
study which found that more than 85% of nonsmoking
COPD cases were women (198). Because nonsmokers
represent only 12% of all COPD cases, these data suggest
that women have a higher predisposition to the disease. An
alternative hypothesis here is that these data represent
more secondhand smoke exposure in women with male
partners who smoke.

Women have a greater risk of being hospitalized for
COPD-related reasons compared with men. This could
be due, in part, to an increased perception of symptoms
and a greater tendency to seek healthcare treatment
than men (199). Regardless, there was no increased risk
of death for women during their hospital stay. Con-
versely, recent studies suggest that once discharged,
women have better outcomes than men when on long-
term oxygen therapy (200). Additionally, in patients
with COPD who have successfully quit smoking,
women had a 2.5-fold greater improvement in lung
function compared with men who quit (201).

A diagnosis of COPD encompasses both emphysema
and chronic bronchitis with airway narrowing. There ex-
ists a sex bias in the type of COPD diagnosed even when
normalized for smoking history and severity of disease.
Men typically have more emphysematous deterioration of
the lung, whereas women tend to have more reactive air-
ways and more pronounced airway narrowing (202, 203).
Analysis of computed tomography data from the National
Emphysema Treatment Trial showed statistically less
emphysema in women despite similar FEV1 compared
with their male cohorts. Although MHT could have
varying effects on airway function, hormone replace-
ment has been reported to be associated with higher
FEV1 in elderly women (204). Interestingly, this may
explain why there is a greater bronchodilator response
in female, but not male, smoking relatives of early-onset
COPD probands.

Overall, the above clinical evidence indicates a clear
difference between men and women in the presentation
and diagnosis of COPD. Sex, hormonal state, and envi-
ronmental factors, which include the extent and intensity
of cigarette smoke exposure, may all play a role in the
observed differences, but much more research is necessary
to elucidate the mechanisms underlying these differences.
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Furthermore, it is important to consider these mechanisms
in the context of lung cancer, which can be a devastating
consequence of cigarette smoke exposure.

Lung cancer is the leading cause of cancer-related death
in both men and women in the United States (205). Sex
differences in both clinical and pathological outcomes of
patients with lung cancer have been examined extensively
(205–210). Lung cancer kills more women each year than
breast, uterine, and ovarian cancer combined (211, 212).
Although the incidence of lung cancer in men is declining,
the incidence in women is continuing to rise, and the ob-
served gender gap in this disease is narrowing (212). The
increased incidence in women is partially attributable to
increased smoking habits in women, which peaked in
1960 (213). Although the current smoking rate for men is
still significantly higher than in women (22.3 vs. 17.4%),
women tend to smoke fewer pack-years than men but are
diagnosed at an earlier age. Taken together, these data
would suggest that women have a higher susceptibility
to cigarette smoke (as is also suggested by the COPD
statistics) (214 –217). Independent of smoking status,
however, nonsmokers diagnosed with lung cancer are
approximately three times more likely to be female, sug-
gesting an additional hormonal component (210, 216).
Fortunately, women diagnosed with lung cancer have bet-
ter prognoses and 5-yr survival than men at all stages and
subtypes of disease including small cell lung cancer, which
characteristically carries a poor prognosis (205, 217,
218).

Non-small cell lung cancer (NSCLC; includes adeno-
carcinoma, squamous cell carcinoma, and large cell car-
cinoma) is the leading lung cancer histology, accounting
for approximately 85% of cases. Among smokers, men
have more squamous cell carcinoma, whereas women
have more adenocarcinoma (218, 219). When considering
nonsmokers, adenocarcinoma is the predominant histol-
ogy, with women forming the majority of presenters with
this disease (206, 217).

The above clinical and epidemiological data would sug-
gest that sex hormones may contribute to lung cancer.
However, data on estrogen, progesterone, and MHT pre-
vent clear conclusions from being drawn. Menstrual and
reproductive factors related to lung cancer risk were eval-
uated in multiple studies (220–222). The Shanghai Wom-
en’s Health Study evaluated the risk of lung cancer in
never-smoking females and found reduced risk with in-
creased number of births, later age of menopause, and a
longer reproductive period (i.e., greater hormonal expo-
sure). These data were contradicted by others noting that
early onset menopause (age 40 yr or younger) increased
the risk of adenocarcinoma in women (221), and that lon-
ger reproductive periods, defined as early-age menarche

and late-age onset of menopause, increased the risk of lung
cancer in Japanese never-smokers (222). Furthermore,
limited data relating specifically to MHT are mixed, show-
ing increased lung cancer risk, no effect, or decreased lung
cancer risk in MHT users (209, 223–226). For NSCLC,
women diagnosed at older ages have better survival (227),
and higher circulating estrogen levels in general correlate
with shorter survival (228). These results suggest that
menopausal women not on MHT should have better sur-
vival rates, as evidenced by one study (226). Conflicting
reports suggest that MHT alone does not alter lung cancer
risk in women but increases the risk if women use MHT
and continue to smoke, whereas others have found MHT
to be protective against lung cancer in female smokers
(209). Finally, one of the largest trials evaluating MHT in
the United States was the Women’s Health Initiative. Lung
cancer was not a primary outcome of the study; however,
post hoc analysis revealed that there was no significant
increase in lung cancer incidence in women receiving hor-
mone therapy.

Overall, the above seemingly conflicting and complex
data suggest that the dose, timing, and duration of sex
steroids (e.g., number of births, MHT) vs. those of ciga-
rette smoke exposure (e.g., total pack-years, smoking ces-
sation during pregnancy/lactation) are modulating factors
in susceptibility and course of lung cancer in women. Al-
though it is not clear how sex steroids influence responses
to inhaled tobacco smoke, tumor biology and growth, or
response to therapies, it is known that ER are present in
normal lung tissue and lung cancer tumors. In fact, ER�-
positive lung tumors are a positive predictor for survival,
whereas patients with ER�-positive tumors have de-
creased survival rates (229, 230). Given this and other sex
differences in incidence and survival in lung cancer, fur-
ther research exploring the role of sex steroids in lung
cancer therapies should be pursued.

D. Fibrotic diseases
PF is a progressive disease characterized by inflamma-

tion and scarring of the lungs, it affects approximately 5
million persons worldwide, and it is more common in men
than women (231). This restrictive lung disease is charac-
terized by progressive decline in FVC and FEV1 as well as
a reduction in TLC. The incidence of PF ranges from 1.4:1
to 2.1:1 (male:female) (231, 232). Environmental factors
including cigarette smoking increase the odds ratio of de-
veloping PF by 2-fold. Median survival is 2–5 yr from
diagnosis, and the only viable treatment option is lung
transplantation. Mortality rates from PF have been re-
ported to be higher in men compared with women in the
United States from 1992–2003 (233). Interestingly, the
mortality rates are increasing more rapidly in women
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than in men, suggesting that the observed sex differ-
ences in PF would be abolished or even reversed in the
near future (233).

Sex differences in interstitial lung diseases such as PF
have been studied in animal models. Cigarette smoke ex-
posure leads to greater emphysematous changes of alveoli
of female mice (234). In bleomycin models of PF, higher
mortality and greater fibrosis (collagen deposition, cyto-
kine expression) have been observed in female rats com-
pared with males: effects diminished by ovariectomy, but
exacerbated by estrogen (235). However, the opposite sex
difference has been observed in mouse models of bleomy-
cin injury. The role of sex steroids in these models is not
entirely clear. In vitro, estrogens are known to enhance
release of profibrotic factors in lung fibroblasts (see Sec-
tion IV.C). A single study has further suggested that air-
way fibrosis is controlled by both relaxin and estrogen
with the latter having a protective effect in the absence of
relaxin (236). In vitro, data regarding development and
progression of PF are lacking, and many studies on sex
steroid effects on fibroblasts and extracellular matrix pro-
teins have not been lung specific. Given that mortality
rates are increasing more rapidly in women, detailed in-
vestigation on the relationships between sex hormones
and fibrosis is warranted.

E. Pulmonary hypertension
Pulmonary hypertension (PH) is a relatively rare dis-

ease that affects approximately one or two people per
million, with approximately 300 new cases every year in
the United States. However, PH leads to more than
15,000 deaths and more than 250,000 hospital visits
per year (237, 238). PH is characterized by mean pul-
monary arterial pressure of at least 25 mm Hg, in-
creased vascular proliferation and remodeling, intimal
fibrosis, plexiform lesions, right ventricular hypertro-
phy, and ultimately right heart failure (237, 239, 240).
There is female predominance of both idiopathic and fa-
milial (heritable) PH, with female:male prevalence ratio
from 2:1 to as high as 4:1 (239–241). Additionally, PH
generally presents in women in their 30s, approximately
10 yr earlier than in men (242, 243). With the observed
female predominance in all types of PH—idiopathic, fa-
milial, pulmonary arterial hypertension (PAH), and por-
topulmonary hypertension—the influence of gender and
sex steroids has been a focus of ongoing research and has
been reviewed recently (239).

PAH occurs in two distinct age groups of women: those
of childbearing age generally in their 30s, and postmeno-
pausal women (240, 244). Early PAH was at first attrib-
uted to the now well-recognized adverse effects of appetite
suppressants (including aminorex fumarate and fenflu-

ramine) in young women (245, 246); however, despite the
removal of such harmful agents from the market, the in-
creased prevalence in women has persisted, suggesting a
possible hormonal link. Here, OC, specific to younger
women, may be a risk factor (247); however, some epi-
demiological data do not support this idea (246). The use
of MHT in postmenopausal females suggests a protective
effect from development of PH (248). Experimental evi-
dence, as well as data from systemic hypertension re-
search, suggests that estrogens have a protective effect on
pulmonary vasculature; however, this does not appear to
be the case in the predominantly female patient population
(240). Several autoimmune diseases associated with the
development of PH such as lupus, scleroderma, and rheu-
matoid arthritis (238, 249) have a female predominance.
Estrogen and progesterone have been shown to exacerbate
immune responses, whereas androgens are protective
(250–252). Given that the majority of PH presents with-
out preexisting autoimmune disorders, the correlation be-
tween these diseases, although interesting, does not fully
explain the observed sex differences in PH.

Although the role of estrogens in PH is recognized clin-
ically, the direct effects of estrogen and its metabolites on
the pulmonary vasculature are still under investigation.
Animal data and traditional models of PH show that es-
trogens have protective effects, yet women are consistently
diagnosed more often than men. The role of estrogens and
the development of PH have been reviewed extensively
(240, 253, 254). Briefly, estrogen is known to stimulate
both NO and prostacyclin production in the pulmonary
vasculature (255, 256). NO is one of the most effective
endogenous vasodilators. Furthermore, continuous iv in-
fusion of epoprostenol has been shown to have beneficial
effects in patients with PH, increasing both short- and
long-term survival (239). Additionally, estrogen down-
regulates gene expression of endothelin-1, which is a po-
tent vasoconstrictor and vascular smooth muscle mitogen
(257). Preliminary results employing endothelin-1 recep-
tor antagonist, sitaxsentan, suggest beneficial effects in
patients with PH (239). 2-Methoxy estradiol (2ME), an
estrogen metabolite, has been shown to inhibit endothe-
lin-1 and stimulate prostacyclin production in vasculature
(253). Estrogens themselves have also been shown to be
mitogenic (endothelial and vascular smooth muscle cells)
and prothrombotic. The development of in situ thrombo-
ses is a hallmark of idiopathic PH and may be a result of
the hormonal milieu in women who develop this disease.
Additionally, effects of estrogen on endothelial growth
and dysfunction are unclear; however, data suggest that
estrogens negatively regulate endothelial cell plexiform le-
sion development. Taken together, the above data suggest
that sex steroids likely contribute (either positively or neg-
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atively) to sex differences in PH pathogenesis, progres-
sion, and response to therapy. It is also clear, however, that
it is not simply estrogen that makes women more suscep-
tible. Further research into the underlying mechanisms,
the roles of progesterone in women, and perhaps a pro-
tective role in men is necessary. Here, the differential ef-
fects of sex steroids on different cell types of the pulmo-
nary vasculature (endothelium vs. smooth muscle) are also
important. Section IV.D explores current understanding
of these effects in more detail. Finally, the development of
animal models more representative of the human disease
will also be essential in discovering novel therapies for the
treatment of PH.

F. Other conditions

1. RDS
Advances in neonatal intensive care have greatly in-

creased survival in babies as young as 24 wk gestation.
Considering the time course of fetal lung development, the
premature infant is at great disadvantage from a respira-
tory and survival perspective. Indeed, many infants weigh-
ing less than 1000 g at birth have RDS (hyaline membrane
disease) with initial hypoxia and the need for supplemen-
tal oxygen, as well as requiring intubation and mechanical
ventilation (258). Male fetuses are at higher risk for pre-
mature birth (�55% of premature infants are boys) and
for developing RDS (relative risk, �1.6) (36, 259–261).
Administration of antenatal corticosteroids to mothers at
risk for premature delivery reduces RDS more in female
premature infants (262, 263) (however, see recent meta-
analysis in Ref. 264 suggesting equal benefit of cortico-
steroids in males and females). Earlier surfactant produc-
tion in the female fetus, compared with the males, may
play a role in the maintenance of airway patency (28).

2. Bronchopulmonary dysplasia
A chronic disease of the immature lung (265), BPD

occurs in more than 20% of the approximately 50,000
premature births in the United States of less than 1500 g
weight (266, 267). BPD is a risk factor for childhood
asthma and other respiratory illnesses that may persist
into adulthood. There is now considerable evidence that
preterm male infants are also at higher risk for BPD (268,
269). Although the mechanisms underlying BPD are still
under investigation, they include RDS itself, inflamma-
tion, exposure to increased oxygen concentration, and (if
applicable) barotrauma resulting from mechanical venti-
lation. In this regard, the levels of TGF�, known to be
involved in tissue repair, are higher in tracheal aspirates of
preterm male infants who went on to develop BPD than in
preterm males who did not develop BPD (268). The fetus

is exposed to high levels of estradiol and progesterone,
which decreases by several orders of magnitude after par-
turition. Premature birth deprives the newborn of these
female sex hormones at an earlier stage of lung develop-
ment. Accordingly, there has been recent interest in the
replacement of estrogen and/or progesterone in extremely
premature infants who are at risk for BPD (270–272),
although the results are not conclusive. Other mechanisms
such as sex steroid modulation of NO may also play a role
in regulation of airway and vascular tone and remain to be
examined.

3. Cystic fibrosis (CF)
Although many of the diseases described above suggest

a role for sex steroids, the contribution of inherent sex
differences is exemplified by CF, a systemic disease caused
by a mutation in the CF transmembrane conductance reg-
ulator gene that manifests in airway destruction from re-
peated infections and impaired mucus clearance. There is
no sex-linked difference in the incidence of CF (273); how-
ever females aged 1–20 yr have a significantly higher mor-
tality (274, 275) and reduced life span (276) compared
with males. In CF, girls have lower FEV1 than males, con-
trary to what is found in healthy children and adolescents
(273, 275). Anatomically, the smaller lungs of females in
combination with impaired mucus clearance may explain
increased risk of infection in females, another predictor of
mortality (275, 276). Interestingly, the relative risk of
death for females remains roughly constant at 1.6
throughout childhood, adolescence, and young adult-
hood, suggesting that hormonal influences at puberty may
not be contributory (275, 276). However, recent studies
have reported cyclical decreases in lung function in female
patients with CF, which may increase their susceptibility
to bacterial infection when estrogen levels are low (277).
Alternatively, periovulatory (peak) concentrations of es-
tradiol can decrease uridine triphosphate-induced chlo-
ride secretion, which may contribute to impaired mucus
clearance (278).

IV. Sex Steroids in Lung Physiology
and Pathophysiology

A. Sex steroid signaling
The synthesis pathway for sex steroids is thoroughly

established (for recent reviews, see Refs. 279 and 280).
Both gonadally derived and locally produced sex steroids
(281–283) determine the eventual concentration system-
ically and in various tissues. In this regard, studies evalu-
ating the effects of sex steroids in the lung report values in
a variety of formats that range from exogenous molar
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concentrations to endogenous serum levels, which makes
drawing comparisons between studies somewhat difficult.
Table 2 provides normal ranges of testosterone, estradiol,
and progesterone for men and women (nonpregnant,
pregnant, and postmenopausal) in both nanograms per
milliliter and molarity and is derived from a number of
established sources (284–286).

Both genomic (11, 287–292) and nongenomic (289–
295) aspects of sex steroid signaling (albeit in tissues other
than the lung) have been extensively reviewed. Classical
sex steroid receptors include two ER (ER� and ER�), two
progesterone receptors (PR-A and PR-B), and the andro-
gen receptor (AR). As members of the superfamily of nu-
clear receptors (296, 297), these receptors bind their re-
spective hormones, resulting in receptor translocation
from cytoplasm to nucleus, where homodimerization and
in some cases heterodimerization can occur. Classically,
ER� is a better transcriptional activator than ER�, with
the suggestion that ER� antagonizes ER� (298, 299). Nu-
clear heterodimers can form between ER� and ER�, and
ER� with AR (287). For progesterone, PR-B is the main
activator of gene transcription, whereas PR-A acts as a
repressor of PR-B and ER transcription (290, 300). The
AR binds both testosterone and the more active metabo-
lite, 5�-dihydrotestosterone (DHT) (301, 302).

Rapid sex steroid signaling events involve membrane-
localized steroid receptors, either full-length or truncated,
as well as G protein-coupled receptors (GPCR) that are
capable of binding sex steroids [e.g., the GPCR30 or
GPER that is estrogen-sensitive (303, 304)]. Nongenomic
effects of steroids have been reviewed extensively by sev-
eral authors, and we refer readers to these reviews for more
detailed explanations (289–295). A major aspect of
nongenomic signaling of sex steroids is modulation of in-
tracellular calcium ([Ca2�]i) (253, 292, 305–307). Mod-
ulation of [Ca2�]i can involve increasing Ca2� via the
phospholipase C-diacylglycerol-inositol trisphosphate
signaling cascade (305) or more commonly reducing Ca2�

by inhibiting a variety of influx mechanisms such as L-type

Ca2� channels (306, 308), K� channels (309), or chloride
currents (310, 311).

Downstream effectors of GPCR including cyclic nucle-
otides, protein kinase C, protein kinase A, and protein
kinase G, are also modulated by sex steroids (312, 313).
Steroid receptor activation can also induce a myriad of
intracellular signaling pathways including MAPK, ty-
rosine kinases, and lipid kinases. In turn, activation of
these pathways can alter subsequent steroid receptor ac-
tivation, including ligand-independent activation or direct
phosphorylation of these receptors by MAPK (314–316).
Estradiol has been shown to activate ERK1/2, p38, and
JNK pathways leading to both c-Jun and c-Fos gene tran-
scription (290, 291, 317, 318). Thus, rapid, nongenomic
actions of estrogens can indeed exhibit genomic down-
stream effects as well. PR-B exhibits cross talk with ER
whereby it primes ER to activate the Src-Ras-ERK path-
ways (319). Additionally, PR can activate p42 MAPK and
phosphatidylinositol-3-kinase in Xenopus oocytes (315).
In vascular endothelial cells, ER� activation leads to phos-
phatidylinositol-3-kinase-Akt-eNOS activation produc-
ing the vasodilator NO (291, 320). Activation of AR in-
volves the c-Src, Raf-1, and ERK-2 pathways leading to
downstream involvement of MAPK (321, 322).

In addition to signaling intermediates, the action of ste-
roid receptors (especially genomic effects) can be further
modulated by a large number of coregulators that fine-
tune enhancement (coactivator) or suppression (corepres-
sor) of steroid-responsive gene expression. In the absence
of ligand, the receptors are associated with heat shock
proteins and other chaperones that prevent unwanted ac-
tivity. With ligand binding, receptor activation, and nu-
clear translocation, binding to hormone-responsive ele-
ments of target genes results in recruitment of coactivators
to help up-regulate transcription. In contrast, corepressors
interact with steroid receptors in the absence of hormone
or in the presence of antihormone. Thus, coregulators can
greatly influence sex steroid function. A number of co-
activators and corepressors have been identified to date,

TABLE 2. Serum sex steroid values in humans

Males

Nonpregnant females

Pregnant females Menopausal femalesFollicular Preovulatory Luteal

Testosterone 2–15 ng/ml 200–800 pg/ml 200–800 pg/ml 200–800 pg/ml 1–1.4 ng/ml 200–800 pg/ml
6–50 nM 0.7–2.5 nM 0.7–2.5 nM 0.7–2.5 nM 3.5–5 nM 0.7–2.5 nM

Estradiol 15–50 pg/ml 20–100 pg/ml 150–400 pg/ml 60–200 pg/ml 1–40 ng/ml 10–30 pg/ml
50–200 pM 80–500 pM 0.5–1.5 nM 0.2–0.8 nM 1–150 nM 40–120 pM

Progesterone 250–900 pg/ml 0.3–1.2 ng/ml 0.7–2.5 ng/ml 1–18 ng/ml 9–300 ng/ml �0.2–1.1 ng/ml
0.8–2.8 nM 0.3–1.5 nM 2–10 nM 10–60 nM 25–1000 nM 0.6–3.5 nM

An important aspect in terms of research on sex steroid effects in the lung or experimental use of sex steroids is the need to approximate physiological serum levels of
hormones when assessing the contribution of sex steroid signaling to disease pathogenesis or amelioration. Hormone levels vary greatly in women after puberty, but
are more stable in men. Hormonal changes with the menstrual cycle, changes with pregnancy, and menopause can correlate to changes in disease state and symptoms
in a variety of lung disease (see text).
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although the tissue-specific distribution, regulation, and
function of such coregulators are still under investigation.
Accordingly, more detailed review of this important, but
emerging topic is beyond the scope of this article. The
reader is referred to a few recent reviews in this area
(323–326).

The above brief description of sex steroid signaling
highlights the fact that depending on the cell type, steroid
concentration, relative receptor expression, coregulators,
and the relative importance of these signaling pathways,
sex steroids have the potential for wide-ranging and com-
plex modulation of cellular function. Cross talk between
receptor signaling pathways may allow for even more nu-
anced regulation. These issues have not been specifically
examined in lung or the cells therein but are likely to be
present in this organ as well.

B. Upper and lower airways

1. Nasal epithelium
The majority of the work to date (albeit limited) on sex

steroid signaling in nasal epithelium has largely been in the
context of diseases such as rhinitis. From these data, a role
for sex steroids (particularly estrogens) in nasal epithelium
can probably be assumed. The relevance of such a role lies
in the modulation of nasal epithelial function during spe-
cific phases of adulthood, such as pregnancy where sex
steroid levels can change substantially.

ER and PR are present in the nasal mucosa. Interest-
ingly, although AR mRNA has been detected, no protein
has been found in human turbinate samples (327). Ac-
cordingly, it is likely that the female sex steroids are the
ones of relevance in the nasal epithelium. ER and PR ex-
pression are substantially up-regulated in the presence of
increased circulating levels of estrogen and progesterone,
for example as occurs with pregnancy (328). Histological
changes consistent with increased edema and mucus se-
cretion in the nasal epithelium of women have been re-
ported to occur with different phases of the menstrual
cycle (329–331). These changes may underlie altered rhi-
nitis symptoms in women during the menstrual cycle and
with pregnancy. However, the relationship between pro-
tein expression and function is less clear. For example,
only ER� (but not ER� or PR isoforms) is expressed in the
nasal mucosa of both males and females (332). Some stud-
ies suggest that ER� may actually serve to inhibit action of
other steroid receptors (294, 333), and thus estrogen ef-
fects on nasal epithelium may occur only in the presence of
up-regulated ER� expression (e.g., during pregnancy). In-
terestingly, progesterone has little to no effect on the nasal
mucosa (334). These data would suggest that estrogen
rather than progesterone is likely involved in rhinitis ex-

acerbations in women; however, functional studies on sex
steroid signaling in allergic rhinitis are few.

Some studies suggest that innate allergy and hypersen-
sitivity to endogenous sex steroids or OC explain changes
in rhinitis symptoms in women (335, 336). In one study,
nasopharynx-nostril pressure gradients were used to as-
sess nasal mucosal reactivity. Approximately 33% of
women who suffered from allergic rhinitis and were also
taking OC had a positive nasal response to topical admin-
istration of OC. There was no response in control groups,
which consisted of males without atopy, females without
atopy on OC, or females with atopy not on OC (336).
Although there was a positive correlation of rhinitis symp-
toms in a subset of allergic women on OC in both studies,
a large percentage of the cohort in Ref. 336 were unreac-
tive to the sex hormone stimulation per se. However, older
studies have reported thickening of nasal mucosa in a va-
riety of mammals subsequent to exogenous estrogen treat-
ment (334, 337). Although actual ER isoform expression
was not examined in these studies, these data suggest a
more complex influence of sex hormones on allergic rhi-
nitis than a simple increase in mucus production by the
epithelium (157, 338, 339). For example, in nasal biopsies
from pregnant women suffering from nasal symptoms,
there was an up-regulation of cholinergic nerve activity
around nasal blood vessels (338). Estrogen also increased
the density of muscarinic receptors in nasal mucosa of
pregnant guinea pigs (339). Histamine receptor mRNA in
cultured human nasal epithelial cells and human mucosal
microvascular endothelial cells was increased by estrogen
and progesterone (but not testosterone) (340). Histamine
is released in response to allergen stimuli, and hyperreac-
tivity of nasal mucosa to histamine is a hallmark of allergic
rhinitis.

The clinical and limited basic research data suggest that
in the nasal epithelium, a number of mechanisms can be
modulated, largely by estrogens. In addition to effects on
mucus production, estrogen may affect cholinergic and
histaminergic signaling in the nasal passageways, resulting
in altered blood flow and mucosal thickening. The rele-
vance of these findings lies in identifying targets (epithe-
lium vs. vasculature vs. innervation) to alleviate nasal
symptoms during the menstrual cycle or pregnancy and
provide relief to rhinitis sufferers. Furthermore, studies are
needed to determine whether mechanisms underlying rhi-
nitis exacerbation in males are similar and involve sex
steroid signaling due to local conversion of testosterone.
Finally, with the understanding that rhinitis and similar
diseases involve a large inflammatory component, it will
be important to establish the effect of sex steroids on im-
mune cell function and inflammatory signaling within the
epithelium.
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2. Bronchial epithelium
The bronchial epithelium serves as a barrier within the

airway, an early recipient of and responder to external
stimuli including pathogens, allergens, and pollutants,
and as a modulator of airway tone. Bronchial epithelial
inflammation is a key factor in the pathogenesis of asthma,
bronchitis, and a host of other “lung” diseases. Lung can-
cers (e.g., squamous cell carcinomas, NSCLC) are derived
from bronchial epithelial cells (BEC). Accordingly, under-
standing sex differences in BEC structure/function or the
effects of sex steroids on BEC is important. However, few
studies have examined the effect of sex steroids on BEC.

In immortalized airway epithelial lines, both ER� (341,
342) and ER� (342) were present, with ER� being the
predominant isoform. In a recent study, we found that
freshly isolated human bronchial epithelial tissue, as well
as single BEC express abundant ER� and ER� in fairly
comparable and abundant quantities (343). Whether PR
or AR is expressed in BEC is not known, although expres-
sion is likely. Regardless, it is possible that as with nasal
epithelium, only ER are of relevance in the bronchial
epithelium.

The relevance of sex steroid signaling in BEC lies, at
least in part, in the potential regulation of NO in the air-
way. Studies in vascular endothelium have already estab-
lished that estrogens can facilitate dissociation of endo-
thelial NO synthase (eNOS) from caveolae of the plasma
membrane, resulting in activation of the NO pathway and
potentiation of vasodilation (344). Akin to endothelium,
NO produced by the bronchial epithelium can be a potent
bronchodilator (345, 346). Furthermore, with inflamma-
tion, eNO is used as an indicator of airway inflammation
(110, 154), although the source of such NO may actually
be inducible NO synthase (iNOS) (347), with BEC being
the predominant source. In an immortalized BEC line
H441, estradiol has been shown to acutely increase the
conversion of [3H]L-arginine to [3H]L-citrulline through
eNOS activation, an effect inhibited by the ER antagonist
fulvestrant (ICI 182,780) (341). In a recent study, we
found that both ER� and ER� activation [achieved using
receptor-specific ligands (R,R)-5,11-diethyl-5,6,11,12-
tetrahydro-2,8-chrysenediol ((R,R)-THC), diaryl-propio-
nitrile] acutely (within minutes) increases NO production
in nonimmortalized, enzymatically dissociated human
BEC (343). Such effects are accompanied by eNOS phos-
phorylation. Furthermore, in human bronchial rings from
females, physiologically relevant concentrations of estro-
gens (�10 nM) produce potent bronchodilation, which is
substantially blunted by epithelial denudation. These lim-
ited data suggest that, similar to endothelium, estrogens
are capable of inducing NO in bronchial epithelium via

nongenomic mechanisms, thus potentially modulating
bronchodilation.

In humans, eNO fluctuates in menstruating women
compared with women on OC such that eNO decreased
when estrogen levels were high, whereas increased pro-
gesterone levels correlated with increased eNO. Addition-
ally, women on OC did not exhibit fluctuations in eNO
(110). Other studies on the relationship of menstrual sta-
tus and eNO have yielded conflicting results (108, 109,
348, 349). eNO is thought to affect activity of iNOS and
inflammatory cells in the lung. No work to date has ex-
amined the effect of sex steroids on iNOS regulation in
BEC. Nonetheless, menstrual fluctuations in eNO suggest
the contribution of both genomic (considering the baseline
levels of estrogens or progesterone) and possibly non-
genomic (during specific points of the hormonal cycle)
mechanisms.

In addition to altered production of NO, BEC growth
and proliferation are effected in diseases such as bronchitis
and asthma. In other tissues, estrogens, progesterone, and
testosterone are all known to modulate cell proliferation
(291, 350, 351). There is currently limited information on
the effect of sex steroids on BEC proliferation. Effects of
estrogen on proliferation of immortalized BEC were con-
flicting (342). Estradiol increased proliferation in three of
five cell lines; however, only two of the three lines exhib-
ited ER activation. To date, no work on the effects of
androgens or progesterone on BEC has been reported.

Finally, sex steroid signaling in bronchial epithelium
may also be important in CF. Although the role of sex
steroids is not well established in CF, cyclical decreases in
lung function in female CF patients (277) and estradiol
effects on uridine triphosphate-induced chloride secretion
(278) suggest that susceptibility to infection and impaired
mucus clearance may both be modulated by estrogens.
Considering the importance of the airway epithelium,
these are certainly topics that should be pursued from a
perspective of understanding sex steroid signaling in the
airway, as well as for development of new avenues for drug
therapy targeting airway diseases.

3. Alveolar epithelium
Sex steroid signaling in alveolar epithelium is relevant

across the life span. Sex steroids, specifically androgens,
affect the maturation of alveolar type II epithelial cells and
the subsequent production of surfactant in male fetuses
(352–354). Changes in the histopathology of type II cells
in adults show a sex difference, with men developing more
emphysematic COPD than women (202, 203) and with
women having a greater predominance of lung adenocarci-
noma (217–219, 355). The presence of ER� and ER� as well
as PR and AR has been reported in the alveolar epithelial

Endocrine Reviews, February 2012, 33(1):1–47 edrv.endojournals.org 17

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article-abstract/33/1/1/2354750 by guest on 07 April 2020



layer of normal lung biopsies as well as in tumors (355–357)
andimmortalizedalveolarepithelial cell lines includingNCI-
A549 and NCI-H23 (355, 357, 358). Furthermore, sex
steroid enzymes aromatase and 17�-hydroxysteroid de-
hydrogenase have also been detected (358, 359). Thus, the
potential exists for a range of sex steroid effects within the
airway epithelium. However, as with nasal and bronchial
epithelium, studies to date have largely focused on these
effects in the context of disease.

Studies on the actions of sex steroid in emphysema are
lacking. Early research in rats suggested that administra-
tion of progesterone or medroxyprogesterone is able to
reverse emphysematic changes in lung air spaces (360,
361). A similar effect of progesterone was reported in an
experimental model of papain-induced emphysema (362,
363). Interestingly, administration of progesterone to pa-
tients suffering from emphysema reduced hypercapnia
and improved symptoms (364); however, mechanisms un-
derlying such effects were not studied, and it is not entirely
clear whether there is actual improvement in lung struc-
ture. Furthermore, it is not known whether these effects
can be attributed to signaling in alveolar epithelium per se.
Nonetheless, these limited data would suggest that female
sex hormones may be protective against the development
of emphysema, although much more work on this topic is
warranted before clinical implementation of sex steroids
in emphysematic COPD.

Estrogen has been implicated in the predominance of
NSCLC in females as well in the progression of tumors.
Women are generally younger than men and develop ad-
enocarcinoma with less pack-year smoking history than
men. It is thought that female sex hormones play a role in
these observations, especially given the well-documented
effect of estrogen on ER-positive breast cancer progres-
sion. Although the selective ER modulator tamoxifen has
proven efficacy in preventing breast cancer proliferation,
it is suspected to promote lung tumor growth (365). In-
deed, estradiol-induced enhancement of NSCLC prolifer-
ation was reported in the NCI-H23 cell line, an effect at-
tenuated with small interfering RNA directed against ER�

or ER� or the pharmacological ER antagonist fulvestrant
(ICI 182,780) (366). The combination of epidermal
growth factor (EGF) and estradiol increased p42/p44
MAPK activity in NCI-H23 cells above EGF or estradiol
alone. Functional interactions between ER and EGF re-
ceptor (EGFR) were found in lung cancer cells (367).
EGFR activation subsequently activates ER independent
of ligand binding (366). Accordingly, a combination of
fulvestrant and the EGFR kinase inhibitor erlotinib has
been shown to prevent xenograft tumor growth better
than either intervention alone (366). This correlates with
the clinical observation that patients with tumors overex-

pressing EGFR and ER� have poorer outcomes (368). Ad-
ditionally, favorable outcomes are negatively correlated to
serum estrogen levels (228). In addition to gonadally de-
rived estrogens, local production may also be relevant in
the case of lung cancers. Aromatase, the enzyme that con-
verts testosterone to estrogen, was found in more than
85% of NSCLC from male and female patients (369), and
aromatase expression negatively correlates with long-
term survival in postmenopausal women (370). Overall, if
anything, these data suggest a detrimental role for estro-
gens in the alveolar epithelium when it comes to cancer,
which appears to be in sharp contrast to a potentially
beneficial role in COPD or even in the bronchial epithe-
lium. This only emphasizes the need for more careful ex-
amination of sex steroid signaling within specific lung cell
typesandexplorationof targeteddeliveryofdrugs tomod-
ulate these effects within cells of interest.

Contrary to the pro-proliferative effects of estrogen,
progesterone inhibits proliferation in a dose-dependent
manner in NSCLC cell lines and reduces tumor volume in
nude mice (355). Nearly 50% of NSCLC patient speci-
mens stain positive for PR (371), which predicts better
outcomes. Local progesterone synthesis (via 3� hydrox-
ysteroid dehydrogenase) may also be important (372,
373). Thus, in women, the relative amounts of circulating
and local levels, of estrogen vs. progesterone may be im-
portant determinants of tumor progression and patient
prognosis. However, much more work is needed to un-
derstand the potential interaction between ER and PR sig-
naling within tumors and the relative influence of estro-
gens vs. progesterone on these receptors, especially in
women.

Androgen effects in lung cancer have been barely stud-
ied. Androgens promote proliferation in AR-positive
small cell lung cancer cells (374). AR are present in lung
cancer tissue samples and the NCI-A549 cell line, with
testosterone up-regulating AR in these cells (357). AR ex-
pression is usually low in the NCI-A549 cell line but is
significantly up-regulated with the androgen DHT, which
works with EGF via p38 MAPK to enhance cellular
growth (375). In addition to proliferative effects, testos-
terone may also up-regulate genes such as CYP1A1 (357),
which encodes proteins that convert estradiol to more po-
tent metabolites (253), catalyze elements of cigarette
smoke and other carcinogens, and have been associated
with increased susceptibility to bronchogenic carcinoma
(376). These limited data generally suggest a deleterious
effect of androgens in lung cancer. Although much more
work is needed here, it is important to consider whether
local aromatase-induced conversion of testosterone to es-
trogen could potentiate cancer cell proliferation, espe-
cially via interactions with the EGFR.
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In addition to lung cancer, there has been considerable
recent interest in the role of sex steroids in acute lung
injury. A beneficial and protective role for estrogens, but
a potentially detrimental role for progesterone, has been
reported in cardiac and renal ischemia/reperfusion injury
(377–380) in both animals and humans. These data set the
stage for examining the impact of sex steroids on acute
lung injury, although to date such effects have been ex-
amined only in animal experiments. In general, it appears
that male sex and androgens are both detrimental to AHR
and inflammation after aspiration of bacterial lipopoly-
saccharide (LPS) (167). Indeed, even in females, testoster-
one worsens the inflammatory response. Furthermore,
even in lung injury secondary to injury in other organs
(e.g., to the gut), androgens are detrimental whereas es-
trogens are protective (381–383). Consistent with a pro-
tective role, administration of exogenous estrogen to pre-
viously ovariectomized mice reverses LPS-induced lung
injury (384), potentially through modulation of cytokine
profiles and cell adhesion molecules (384), as well as mod-
ulation of cellular apoptosis (385). Furthermore, estro-
gens, acting via ER� may modulate iNOS and thus reduce
the level of inflammation (386). These exciting data pro-
vide a basis for work in humans to explore both sex dif-
ferences in the response to (and recovery from) acute lung
injury and the potential protective role of estrogens.

4. Airway smooth muscle (ASM)
Research regarding the role of sex steroids in modula-

tion of ASM is rapidly progressing given clinically ob-
served sex differences in asthma and airway-predominant
COPD. Both increased AHR to cholinergic agents, and
ASM hypertrophy and hyperplasia (increased ASM mass)
contribute to the pathogenesis of asthma (43, 387). Ad-
ditionally, increased ASM mass and decreasing lumen di-
ameter are hallmarks of chronic bronchitis and COPD
(388). An important caveat here is that considering the
multifactorial nature of diseases such as asthma or COPD,
sex differences in airway structure and function may re-
flect a net effect of sex steroids on multiple cell types within
the airway. We will focus on BEC vs. ASM vs. immune
cells in the current review. However, it is important to
recognize the potential role of other mechanisms including
airway innervation that may regulate airway irritability
(e.g., in the presence of environmental triggers) as well as
airway tone (by release of bronchoconstrictors such as
ACh vs. bronchodilators such as NO). Another consider-
ation is the contribution of genomic vs. nongenomic mech-
anisms. Here, we will review what is known on the direct
role of sex steroids on ASM reactivity and proliferation.

The general consensus from in vitro work, although
limited, is that estrogens are bronchodilatory. However,

attention should be paid to the concentrations being used
as well as whether acute or chronic effects are being con-
sidered. An early study (122) on the relatively acute (60
min) effects of estradiol, testosterone, and progesterone
reported potentiation of isoprenaline-induced relaxation
in isolated pig bronchus. Here, supraphysiological con-
centrations of estradiol were found to be the strongest
potentiator of the bronchodilatory response to isoprena-
line (122). Another set of studies found that chronic (21 d),
low doses of estradiol (10 �g/kg) increased the concen-
tration of inhaled ACh necessary to double airway resis-
tance in ovariectomized rats (176) (an epithelium-depen-
dent effect), whereas rats receiving high-dose estradiol
(100 �g/kg) had increased responsiveness to ACh (389)
(an epithelium-independent effect). Although species dif-
ferences may explain the discrepancies between these
studies, the acute exposure in one study (122) vs. chronic
exposure in the others (176, 389) should be noted.

Studies on estradiol-induced relaxation of tracheal
strips from rabbits have been consistent with the rat stud-
ies but have implicated a different mechanism involving
direct effects on ASM (390, 391). For example, 100 �M

estradiol has been found to relax rabbit tracheal strips
preconstricted with ACh, an effect not reduced by the NO
synthase (NOS) inhibitor NG-nitro-L-Arginine or removal
of the epithelium (391). Although the estradiol concen-
tration in this study was substantially higher than the
physiological range, estradiol effects were attributed (at
least in part) to prostaglandin synthesis and cGMP mod-
ulation of ASM tone (391). This is significant because both
cGMP and estrogens can influence mechanisms such as
Ca2� influx channels, and thus estrogens can potentiate
the effects of epithelially derived NO. Separately, pros-
taglandins can modulate cAMP levels, which may pro-
vide an additional avenue for estrogens to potentiate
bronchodilation.

The mechanisms by which estrogens directly influence
ASM contractility (i.e., not via epithelially derived NO or
innervation) have not been systematically examined. As
with other cell types, estrogens could modulate membrane
potential (e.g., via K� channels) as well as other Ca2�

regulatory mechanisms. In the mouse, it has been reported
that estrogens enhance activity of Ca2� activated K� chan-
nels, thus lowering membrane potential and indirectly re-
ducing Ca2� (174). In human ASM cells, physiological
concentrations of estrogens as low as 100 pM substantially
decrease Ca2� responses to agonists such as ACh (392).
These effects appear to predominantly involve ER�, with
only a minor contribution of ER� despite relatively equiv-
alent expression of both receptors in human ASM. These
effects also appear to involve inhibition of L-type channels
as well as store-operated calcium channels, which are im-
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portant in regulating [Ca2�]i. Regulation of [Ca2�]i in
ASM involves both calcium influx and calcium release
from intracellular stores (392–394). Estrogens do not ap-
pear to have a significant effect on [Ca2�]i stores in human
ASM, whereas in human BEC, we recently found that the
same concentrations of estrogens can induce sarcoplasmic
reticulum Ca2� release via inositol trisphosphate receptor
channels (343). Overall, these limited data suggest that a
major mechanism by which estrogens can produce bron-
chodilation is by reduction of [Ca2�]i in ASM in a non-
genomic fashion. Genomic effects of estrogens on Ca2�

regulation in ASM have not been examined but could po-
tentially involve altered expression of Ca2� regulatory
proteins or intracellular signaling mechanisms that may
indirectly modulate both Ca2� and the contractile appa-
ratus of ASM.

A potential, but obvious reason for sex differences in
airway reactivity may be differences in ER expression of
ASM derived from male vs. female humans and/or ani-
mals. In pilot studies, we have found that ASM derived
from male vs. female patients express full-length ER� and
ER� to comparable extents (E. A. Townsend, M. A.
Thompson, C. M. Pabelick, and Y. S. Prakash, unpub-
lished observations), whereas others have found ER ex-
pression in lungs from both male and female mice (395).
Accordingly, the potential exists for ER activation in both
males and females. In our previous study on calcium reg-
ulation, we examined ASM cells derived only from female
patients (392). Therefore, sex differences in airway reac-
tivity at the cellular or whole animal level may involve
differences in the activation of signaling pathways down-
stream of the ER and should be examined systematically.

Although the in vitro work in tracheal or bronchial
rings is consistent with the idea of estrogen-induced bron-
chodilation, in vivo studies in mice on sex differences in
asthma are less clear. A potential problem here is that it is
difficult to isolate the effects of sex steroid on ASM alone
in the setting of elevated presence and activity of inflam-
matory cells and cytokines, as well as steroid effects on
other airway elements (especially epithelium or airway
innervation). Several murine models of allergic asthma
exhibit sex differences in airway responsiveness vs. airway
inflammation, but the data are conflicting (44, 167, 169,
171, 174, 175, 177). For example, male C57BL/6 mice
show more AHR than females, indicating a protective ef-
fect of estrogen (167). However, an inherent sex difference
in AHR does not necessarily suggest a constrictive or dil-
atory effect of sex steroids on ASM. Furthermore, female
mice actually exhibit more airway inflammation (166,
170). Again, it is not clear whether estrogen and/or pro-
gesterone are actually involved. Importantly, these studies
highlight the importance of distinguishing between AHR

vs. inflammation. In these models, ovalbumin, LPS, or
tobacco smoke was used to induce an allergic phenotype
resulting in subsequent AHR.

Focusing on AHR, estradiol substantially blunts car-
bachol-induced airway constriction via the NO-cGMP-
PKG pathway, resulting in increased activation of Ca2�-
activated potassium channels (174). This effect may be
sex-specific because only male mice exhibited methacho-
line-AHR, and administration of estrogen to males atten-
uated this AHR (175). Female mice lacking the ER�

receptor display enhanced airway responsiveness to meth-
acholine, thought to be related to M2 muscarinic receptor
dysfunction (168). Furthermore, in response to electrical
field stimulation (a common technique used to identify the
contribution of neurally derived signals), tracheal rings
from these knockout mice released more ACh from airway
innervation compared with their wild-type controls.
These limited data suggest at least partial involvement of
ER signaling within airway nerves as well as NO in sex
differences in AHR. Interestingly, these animal studies
would suggest a lack of direct effect of estrogens on ASM,
which appears to be in sharp contrast to the in vitro work
(especially in human cells). Several reasons may underlie
this discrepancy, including species differences in estrogen
action on ASM; the interaction between ASM and other
cells including epithelium, immune, and nerves in vivo that
is absent in vitro; and the lack of current in vitro data on
how estrogens affect ASM in the presence of inflamma-
tion. Further work is required to determine the true im-
portance of ASM in mediating estrogen effects in the air-
way, especially in the presence of inflammation.

The effects of progesterone on ASM contractility have
been less studied. Progesterone has been reported to po-
tentiate the relaxant properties of isoprenaline in isolated,
constricted pig bronchial rings (122). Here, 40 �M pro-
gesterone had a greater potentiating effect than testoster-
one, but it was less effective than estradiol. Again, the
extremely high concentration of progesterone should be
noted (Table 2). Another study reported that progesterone
and 5�-pregnenolone prevented agonist-induced contrac-
tion of guinea pig trachea, with a greater effect of proges-
terone (396). These effects were proposed to involve direct
inhibition of Ca2� entry but not via �-aminobutyric acidA-
receptors (396).

Overall, the limited in vitro data suggest that, similar to
estrogens, progesterone has a bronchodilatory effect.
However, further study is required to determine whether
such effects are maintained in the presence of inflamma-
tion and can thus be used as a potentially new avenue to
target AHR. However, in male mice sensitized with
ovalbumin, progesterone actually exacerbates AHR
(173), but only in sensitized animals. Direct effects of pro-
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gesterone on ASM are hard to assess in this context be-
cause only male mice were used without confirmation of
PR expression. Additionally, there was the confounding
presence of inflammation in sensitized mice (173).

The effects of oxytocin on airway responsiveness were
recently reported (397). Oxytocin was found to increase
cytosolic Ca2� in human ASM cells and promote force
generation and airway narrowing in murine tracheal rings
and precision cut lung slices (397). Progesterone is known
to inhibit oxytocin binding to the oxytocin receptor in
uterine smooth muscle to maintain quiescence during
pregnancy (398). As such, progesterone may prevent
oxytocin-induced airway narrowing through competitive
binding. Whether such an effect also contributes to airway
tone remains to be determined.

The nongenomic effects of androgens on ASM have
been examined recently (399, 400). Physiological concen-
trations of testosterone have been found to relax precon-
stricted rabbit tracheal smooth muscle in a dose-depen-
dent manner (399). Removal of the epithelium attenuates
the testosterone response; however, inhibition of AR with
flutamide does not alter the relaxant effects of testoster-
one. This group also used BSA-conjugated, membrane-
impermeant testosterone and saw similar relaxant effects
in epithelium-intact strips, but not upon removal of the
epithelium (399). Similarly, in male guinea pig and bovine
tracheal rings and strips, DHT produces substantial re-
laxation (400). These relaxations required pharmacolog-
ical concentrations of the androgen, and the effects were
epithelium independent, in contrast to the work of Kou-
loumenta et al. (399). In agreement with previous studies,
however, AR inhibition with flutamide did not affect the
DHT-induced relaxation. These relaxant effects were at-
tributed to voltage-gated Ca2� channel antagonism (400).
Again, these limited in vitro data do not provide any clear
indication as to whether ASM is actually involved in me-
diating androgen effects on bronchodilation and stress the
need for further examination of this topic. Here, as with
progesterone, the in vivo animal data are confounding. As
stated earlier, male C57BL/6 mice are more hyperrespon-
sive than female mice (167) and appear to involve testos-
terone-mediated vagal effects on the airway. Castrated
male mice have lower airway responsiveness to metha-
choline than intact males, similar to that of female mice.
Exogenous testosterone therapy to castrated males or fe-
males increased responsiveness. Furthermore, bilateral
cervical vagotomy abrogated methacholine responsive-
ness in intact male, but not female mice (177). These data
suggest that airway responsiveness is controlled through
different physiological mechanisms in male vs. female
mice. Another study indicated that male mice treated with
LPS developed more airway responsiveness than female

mice (167). This sex difference may be due to the effects of
LPS on Th2 inflammatory cytokines (401) and their role
in allergic airway disease (discussed in Section IV.E).
Again, direct effects of testosterone or androgens on ASM
per se are difficult to determine in these in vivo models and
warrant further work.

In addition to altered ASM Ca2�, increased smooth
muscle mass and hyperplasia can also lead to increased
contraction and force generation. In this regard, ASM hy-
perplasia is an important aspect of airway remodeling in
diseases such as asthma. Here, work regarding sex steroid
effects on ASM proliferation is lacking. Although some
cues may be taken from steroid effects on vascular smooth
muscle, other effects have been proven to differ between
the airway and vasculature, and further investigation on
this topic specifically in the airway is warranted. Pretreat-
ment of ASM with physiological concentrations of testos-
terone, estradiol, and progesterone (1 nM–1 �M) has been
reported to have no effect on thrombin-induced cell pro-
liferation (402). In this study, EGF was also used to stim-
ulate ASM proliferation, but sex steroid effects in combi-
nation with this mitogen were not evaluated. Given the
potentiating effect of estrogen and EGF signaling in alve-
olar epithelium, these effects in smooth muscle should be
considered further. Furthermore, the testosterone and es-
trogen precursor dehydroepiandrosterone (DHEA) signif-
icantly and in a dose-dependent manner inhibited rat tra-
cheal smooth muscle proliferation in response to fetal
bovine serum or platelet-derived growth factor. This was
attributed to the prevention of DNA binding with activa-
tor protein-1 (403). The effects of DHEA metabolites were
not examined in this study. Because DHEA is a precursor
to sex steroids, this strengthens the argument for exam-
ining sex steroid effects on ASM proliferation. A very re-
cent study has indeed found that physiological concentra-
tions of both testosterone and 17�-estradiol substantially
enhance proliferation of rabbit ASM cells to comparable
levels (404). The contrast in the data that sex steroids
potentially induce bronchodilation (at least acutely) but
with chronic exposure can worsen airway remodeling by
enhancing cell proliferation should be noted, especially for
future work in determining whether sex steroids (espe-
cially estrogens) are actually beneficial or detrimental to
airway function. This question is only further complicated
by the role of inflammation in airway diseases and sex
steroid effects on the immune system (Section IV.E).

C. Lung parenchyma
Although PF is more common in males, mortality is

actually higher in women, suggesting a need to investigate
sex hormone effects on collagen and fibrotic deposition as
well as enzymes responsible for the breakdown of the ex-
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tracellular matrix, including matrix metalloproteinases
(MMPs). Bleomycin treatment is the most common rodent
model of PF. It induces similar histology in rodents as in
humans developing PF after treatment with this chemo-
therapeutic drug in a dose-dependent fashion (405). One
study (235) reported higher mortality with greater lung
collagen deposition in female rats, an effect blunted sub-
stantially by ovariectomy, but enhanced by estradiol re-
placement. Furthermore, a positive correlation between
estradiol dose and TGF-� mRNA suggested a possible
mechanism for the observed increase in fibrosis (235).
However, another study (406) found that male mice had
a tendency toward greater fibrosis adjacent to the airways
compared with female mice, demonstrating decreased
lung function with increased static lung compliance. This
decline in lung function subsequent to bleomycin treat-
ment closely approximates that observed in humans. Cas-
tration of male mice protected them from decline in lung
function; however, replacement with DHT exacerbated
the decline. These data suggest that androgens are detri-
mental in bleomycin-induced lung fibrosis (406). Con-
versely, a protective effect for estrogens has been reported
in rats where ovariectomy was found to exacerbate PF and
ASM thickening, effects reversed by 2ME replacement
(407). Taken together, these animal data indicate that fe-
male sex hormones and metabolites may be beneficial in
retarding fibroblast growth and progression of pulmonary
fibrosis. This has been verified by the few studies per-
formed in lung fibroblasts in vitro where growth of human
lung fibroblasts decreased upon exposure to 2ME (407),
consistent with the in vivo data. Early studies in fetal lung
fibroblasts showed that high concentrations of testoster-
one, estrogen, and progesterone (5 �g/ml) all decrease cell
density in culture (408). In lung myofibroblasts, incuba-
tion with 20 nM estradiol inhibited proliferation via a non-
genomic, rapid estradiol effect involving phosphorylation
of the Raf1-ERK-MAPK pathway (409). Additionally,
peroxisome proliferator-activated receptor-� activation
inhibited lung fibroblast proliferation in a bleomycin
model of PF (410). DHEA, the testosterone and estradiol
precursor, may be an agonist for peroxisome proliferator-
activated receptor-�. Thus, the presence of enzymes that
metabolize this steroid in lung cells would greatly influ-
ence the effect of sex steroids on lung fibroblast prolifer-
ation. This concept remains to be verified.

Increased secretion of collagen, fibronectin, laminin,
and other profibrotic proteins is not the sole mechanism
responsible for development of PF. MMPs degrade colla-
gen and extracellular matrix components, and changes in
the activity of these endopeptidases can lead to various
pathologies. Decreased MMP activity is implicated in pre-
venting carcinoma metastasis and decreasing tumor an-

giogenesis, while exacerbating lung fibrosis. As such, ef-
fects of sex steroid on MMPs are equally important in
balancing proper synthesis and degradation of fibrotic
proteins in the lung. Again, data in a variety of tissues are
conflicting regarding sex steroid effects on MMPs (and are
not reviewed here), with almost no data relating to the
lung. This represents an important aspect of sex steroid
signaling in the lung that is ripe for research exploration,
with the potential for modifying the process of diseases
such as asthma and PF. Here, particular attention should
be paid to MMP-2 and MMP-9, which are thought to be
highly relevant to lung disease.

D. Pulmonary vasculature
Potential beneficial effects of estrogens on the systemic

cardiovascular system with regard to hypertension would
suggest a protective contribution of female sex steroids
against the development or progression of PH. Indeed, in
experimental animal models of PH, estradiol attenuates or
inhibits development of the disease. However, this pro-
tective nature is not realized clinically, thus forming the
basis for an “estrogen paradox” in PH. Furthermore, com-
pared with the systemic vasculature, less is known on the
role of other steroids (progesterone, testosterone, and
DHEA) in the development or modulation of PH. Several
excellent reviews regarding sex steroids in the pulmonary
vasculature cover these topics (239, 240, 253, 256, 411).
Here, we briefly summarize what is known, and not
known, and highlight the need for further consideration of
sex steroid signaling in regard to PH.

Estrogen has been the most extensively studied sex hor-
mone in regard to the pulmonary vasculature, and most
studies show a vasodilatory effect. The acute vasodilatory
and protective effects of estradiol are present in both
hypoxia- and monocrotaline-induced PH models (253).
Female rats and pigs develop less severe PH when exposed
to hypoxia compared with males (412, 413). Additionally,
ovariectomy exacerbates hypoxia-induced PH, whereas
estradiol replacement reverses this exacerbation (412,
414). In isolated rings of mouse pulmonary arteries, es-
tradiol relaxes preconstricted vessels from both males and
females (415). Overall, these data indicate a protective
role for estradiol in attenuating hypoxic pulmonary va-
soconstriction (416). In monocrotaline-induced models of
PH, female rats develop less severe disease than either male
rats or ovariectomized female rats (417). Estradiol treat-
ment in both males and ovariectomized female rats atten-
uates PH and approximates that of intact females (418,
419). These data would also be consistent with a protec-
tive role for estrogens. However, in other animal models
of PH, estrogens were not found to be beneficial in pre-
venting disease development, with female animals devel-
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oping more severe PH than males animals (420, 421).
These latter models employ occlusion and serotonin re-
ceptor overexpression in the development of PH. The oc-
clusive model more closely approximates the human condi-
tion compared to hypoxia and monocrotaline-induced PH,
whereas overexpression of serotonin may approximate en-
dothelialdysfunction.Thediscrepancies inestrogeneffects in
these different models cannot be explained currently.

Estrogenic effects on the pulmonary vasculature are
regulated in part by endothelial production of NO, which
is mediated through both ER� and ER� (197, 256). This
production appears to be in contrast to estradiol effects in
the systemic circulation, where ER� is primarily involved
(422, 423). In addition to rapid activation of eNOS in
pulmonary endothelium, estrogen stimulates transcrip-
tional up-regulation of NOS (424), along with down-reg-
ulation of the potent vasoconstrictor and smooth muscle
mitogen endothelin-1 (257). Additionally, estrogen stim-
ulates release of prostacyclin and also modulates vasodi-
latory enzymes, cyclooxygenase-1 and -2 (255, 425).

In addition to the endothelium, estradiol can directly
affect vascular smooth muscle. Estradiol has been shown
to acutely relax endothelium-denuded vascular smooth
muscle from coronary arteries by opening the hyperpo-
larizing BKCa via a cGMP-dependent mechanism (312,
426). Other studies have shown estrogen effects on the
voltage-sensitive L-type calcium channels (427, 428). Es-
trogen also inhibits the RhoA/Rho-kinase pathway (429),
wherein RhoA translocation to the membrane induces
smooth muscle contraction and proliferation, and thus
inhibition of this pathway should enhance relaxation. Al-
though these effects of estrogens have been extensively
demonstrated in the systemic vasculature, far fewer stud-
ies have reported similar effects in the pulmonary circuit
(430–432). Here, it is important to emphasize that despite
overlap between vascular smooth muscle of systemic vs.
pulmonary arteries in mechanisms of [Ca2�]i and force
regulation, their relative contribution and thus the overall
effect of estrogens are different. Furthermore, regulatory
mechanisms can differ substantially between pulmonary
arteries of different species. Accordingly, it is important to
determine the mechanisms of estrogen action in pulmo-
nary arterial smooth muscle of species and the disease
models of interest.

Prolonged exposure to estradiol can be pro-prolifera-
tive or proapoptotic, depending on concentration, and is
tissue-specific. Estradiol stimulates proliferation of pul-
monary artery smooth muscle cells, measured by thymi-
dine incorporation, in a dose-dependent manner (418).
However, others have shown that estradiol prevents pro-
liferation of vascular smooth muscle cells derived from the
systemic circulation, possibly by inhibiting the Rho-kinase

cascade. This effect has yet to be demonstrated in the pul-
monary system (429). Additionally, estrogen can regulate
serumlevelsof vascular endothelial growth factor, thereby
indirectly affecting cell proliferation. These studies sug-
gest that even if estrogens have a beneficial effect on pul-
monary vascular tone, more chronic effects of estrogens
may be detrimental in changing vascular structure.

Effects of progesterone on the pulmonary vasculature
have not been studied as extensively as estrogen. Proges-
terone receptors are present in pulmonary endothelium of
patients with PH (433); however, their function has not
been examined. In isolated rat pulmonary arteries, pro-
gesterone was the most potent hormone vasodilator when
compared with testosterone and estrogen in both male and
female rats (434). The vasodilatory properties of proges-
terone have been found to involve inhibition of both
voltage-gated and receptor-operated Ca2� channels
(435). In addition, treatment with the NOS inhibitor NG-
nitro-L-Arginine reduced progesterone-induced dilation,
implying an endothelial-dependent NO mechanism (435).
Progesterone has been found to blunt PH and right ven-
tricular hypertrophy in monocrotaline-induced PH of
ovariectomized female rats (436). In systemic vasculature,
progesterone inhibits both endothelial cell and vascular
smooth muscle cell proliferation (437–439). Whether a
similar alleviating effect of chronic progesterone treat-
ment occurs in the pulmonary vasculature is not known.
Nonetheless, one study in patients with PH suggests effi-
cacy of progesterone therapy in improving the PH pheno-
type where patients with more severe disease had lower
serum progesterone levels and treatment with progester-
one reduced pulmonary artery pressures (440). Consider-
ing the fact that estrogens and progesterone are simulta-
neously present in women, much more research is needed
to understand the interactions between these sex steroids
vis-à-vis pulmonary artery structure and function. This
may be of particular relevance in conditions such as
women patients with preexisting PH who become preg-
nant and are at high risk of exacerbated PH during and
after pregnancy.

As with progesterone, testosterone has been largely un-
derstudied in the context of PH. Treatment of rat pulmo-
nary arteries with testosterone results in an acute vasodi-
lation more potent than estradiol in arteries of both male
and female rats (434). Testosterone effects do not appear
to involve prostaglandins or NO, in contrast to female sex
steroids, and also do not involve the AR (441). How-
ever, similar to progesterone, testosterone inhibits both
voltage-gated and receptor operated Ca2� channels (441).
Interestingly, testosterone effects are more pronounced in
the human systemic circulation. An in vitro study of hu-
man pulmonary and mesenteric arteries showed that tes-
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tosterone was only half as effective in producing vasodi-
lation of pulmonary vessels as in systemic vasculature
(442), whereas an in vivo study showed no vasodilatory
effects of testosterone in the pulmonary circulation (443).
DHEA, which has the highest circulating levels of all ste-
roids, can produce vasodilation in a hypoxic model of PH
in male rats (444). These vasodilatory properties have
been proposed to involve BKCa channels (445) as well as
the up-regulation of soluble guanylate cyclase (446).
DHEA has been found to stimulate endothelial prolifer-
ation in bovine aortic endothelial cells (447). Because pro-
liferation of endothelial cells and the formation of plexi-
form lesions exacerbate PH, the effects of DHEA on
cellular proliferation as well as relaxation need further
investigation. Additionally, previous studies were con-
ducted solely in male animals, but the combination of
DHEA with estrogen and progesterone should be consid-
ered, given the female predominance of PH and the fact
that DHEA is a precursor to both testosterone and
estrogen.

E. Immune cells and function
Allergic airway diseases involve a substantial inflam-

matory component with key players such as dendritic cells
(DCs), CD4� lymphocytes, regulatory T cells, and B lym-
phocytes. The complex interactions between these ele-
ments (along with an increasingly recognized contribution
of structural cells within the lung) results in an overall
increase in the level of Th2 cytokines such as IL-4, IL-5,
and IL-13, leading to increased IgE levels (which may fur-
ther enhance mast cell activation), eosinophilia, and AHR.

The classic thinking was that cytokines produced from
respective cells of the T helper 1 (Th1) vs. Th2 response
reciprocally inhibit each other, and disease manifestations
represent a Th1/Th2 imbalance; however, as our under-
standing of interactions between immune cells and other
components has improved, this concept has proven far
more complex. Nonetheless, based on the idea of differ-
ential immune regulation, several studies have examined
the relationship between autoimmune and allergic dis-
eases in predominantly female cohorts, hypothesizing that
individuals suffering from autoimmune diseases should be
less susceptible to allergic diseases and vice versa. These
studies have shown both positive (448, 449) and inverse
(450–452) correlations between autoimmune and allergic
diseases. Nonetheless, the overwhelming female predom-
inance in autoimmune diseases such as systemic lupus er-
ythematosus, rheumatoid arthritis, and multiple sclerosis
and a higher female:male ratio for allergic asthma in adults
suggest that sex hormones likely play a role in modulating
immunological inflammation. The reader is referred to
several comprehensive reviews regarding sex hormones,

inflammation, and various immune cells (295, 453) for
more detailed discussions. The following discussion is lim-
ited to exploring the role of immune cells relevant to lung
diseases (where data are available) and the effects of sex ste-
roids. Figure 2 schematically summarizes current knowledge
of sex steroid effects on specific types of immune cells, and
illustrates the likely overall complex effect of sex steroids on
immune function. An important caveat, as described ele-
gantly by Straub (453) is that sex steroid effects on immune
cell and function is dependent on concentration, timing, du-
ration, and context of exposure, which is difficult to control
and/or evaluate in most clinical settings as well as in many
experimental protocols.

1. T cells
The ability of immune cells to bind estrogens and an-

drogens has been known for several decades. Both periph-
eral blood mononuclear cells (PBMCs) and thymic cells
bind estradiol, whereas in humans, only thymic cells have
been found to express binding sites for androgens. Al-
though estrogens do modulate PBMC function, the un-
derlying mechanisms are not clear. A recent study showed
intracellular expression of both ER� (albeit truncated
ER�-46 being abundant) and ER� in all types of lympho-
cytes including peripheral natural killer (NK) cells (454),
with estrogen activation of intracellular signaling cas-
cades. Although these limited data suggest that estrogens
can modulate T cells, whether such effects are detrimental
or alleviating for lung disease is not entirely clear.

The potential relevance of estrogen effects on T cells lies
in exacerbation of asthma during the luteal phase and
during pregnancy, when the high estrogen levels shift the
female immune system toward a Th2-type response (455).
Increased levels of IL-4 and IL-10 secretion (Th2-specific
cytokines) occur during pregnancy and in in vitro experi-
ments involving CD4� T cells from humans (453). Addi-
tionally, TNF� (Th1-specific cytokine) secretion is attenu-
atedathigherphysiologicalconcentrationsoftheseestrogens
(�40–400 nM) (456) [although another Th1 cytokine, in-
terferon (IFN)� is actually up-regulated]. These effects ap-
pear to be mediated via ER� (453, 457). Relevant to allergic
airway disease, in NK cells, estrogens can promote IFN�,
which can up-regulate iNOS and cyclooxygenase-2, subse-
quently contributing to inflammation.

Progesterone effects on immune cells similar to those of
estrogen have been documented, although the presence of
PR in various immune cells is not clear (295, 458–461).
Progesterone inhibits generation of Th1 type cells in both
humans and mice (160, 462) and induces both IL-4 (160)
and IL-10 (463) cytokine production while antagonizing
nuclear factor-�B activation, preventing TNF� action
(464). Accordingly, in both pregnant and nonpregnant
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women, progesterone and estrogen may synergize, or act
additively, to alter the Th1/Th2 balance and thus contrib-
ute to asthma exacerbation and its sequelae. A potential
confounder is the relative concentration of either sex ste-
roid, as well as their additional effects on resident airway
cells such as epithelium. There are currently no data on
these topics, but they should clearly be a focus for future
research in suppressing airway inflammation, especially in
the pregnant asthmatic.

In contrast to female sex steroids, androgens favor a
Th1 immune response. Testosterone increases IFN� se-
cretion in CD4� T cells (251, 465, 466). Lymphocytes
from males stimulated with phytohemagglutinin show
higher secretion of Th1 cytokines IFN� and IL-2 (163).
DHEA, precursor to estrogen and testosterone, circulates
as DHEA 3�-sulfate and is higher in males than females.
Data regarding DHEA effects on Th1/Th2 cytokine bal-
ance are contradictory, stemming in part from the fact that
rodents (where many studies have been conducted) do not
secrete DHEA from the gonads or the adrenals. Human T
cells treated with DHEA followed by mitogens or im-

munogens secrete more IL-2 (Th1) (466, 467), a finding
also reported for mice (468). DHEA attenuates allergic
airway inflammation in mice, which may involve Th1 up-
regulation by DHEA (469). Interestingly, male patients
with asthma and atopic dermatitis have lower circulating
levels of DHEA than healthy controls. PBMC isolated
from asthmatics and treated with DHEA reduced both
Th1 and Th2 cytokine responses compared with controls
(470). These studies, however, were conducted primarily
in males due to limited enrollment of women with AHR in
the study (470).

Overall, these data, although not entirely consistent,
suggest that female sex steroids may tilt the immune re-
sponse toward Th2, whereas male sex steroids either tilt
the response to Th1 or suppress inflammation, but more
attention needs to be paid to the sex of the cells being
studied and the sex ratio of patient populations involved
in the trials. These differences are very important in un-
derstanding sex differences in allergic airway diseases as
well as their exacerbation in the setting of altered hor-

Figure 2.

Figure 2. Sex steroid effects on immune cells. Many lung diseases involve a substantial inflammatory component with key players such as DC and
monocytes/macrophages that are particularly important in the initial response to antigens, CD4� lymphocytes, regulatory T cells (Tregs), B
lymphocytes, and other immune cells. In diseases such as asthma, mast cells, CD4� T lymphocytes, and eosinophils are particularly important.
Interactions between antigen-presenting cells and naive CD4 T lymphocytes induces the generation of polarized T lymphocytes characterized at
Th1 (predominantly INF-� secreting) or Th2 (predominantly IL-4 secreting); Th2 polarized cells subsequently have additional downstream effects on
B-cell antibody secretion that may further enhance mast cell activation. The effects of estrogen (E), progesterone (P), or testosterone (T) on
different types of immune cells have been examined to varying and incomplete extents (see Section IV.E), mostly in the context of autoimmune
diseases. This figure schematically summarizes current knowledge of sex steroid effects on specific types of immune cells that are particularly
important in lung diseases and illustrates the likely overall complex effect of sex steroids on immune function. An important caveat not
represented here (see Ref. 453) is that sex steroid effects on immune cell and function is dependent on concentration, timing and duration, and
context of exposure.
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monal status such as pregnancy, menopause, and even
aging.

2. Dendritic cells
DCs are initiators of the immune response, and they

induce T-cell responses to antigens and other signals after
migration to lymphoid tissue. Additionally, macrophages
residing in the lung may activate DC migration and mat-
uration. Macrophages implicated in allergic asthma pro-
mote Th2 immune responses and are referred to as alter-
natively activated macrophages. Female mice sensitized
with ovalbumin show increased numbers of migrating my-
eloid DC as well as lung macrophages compared with
males (471). DC have been shown to express PR-A and
both ERs, whereas macrophages derived from different
regions express all steroid receptors (295). However, there
are currently no data on how female sex steroids may
modulate DC activation, migration, or their triggering of
the immune response in lung diseases. In studies not in-
volving lung, estrogen has been shown to promote func-
tional DC formation from bone marrow precursors,
which is blunted by ER modulators such as tamoxifen
(472), and to promote DC stimulation of T cells (471). In
human DCs, DHEA enhances expression of Th1 markers
(473) and induces maturity of DCs, leading to Th1 im-
mune response. These very limited data suggest that sex
steroids modulate the very early steps in allergic airway
disease. However, their role in prepubertal asthma (in
both males and females) as well as at puberty, where the
male:female ratio switches (or women develop asthma de
novo), remains to be determined. It would also be of rel-
evance to determine whether sex steroid modulation of
DC function underlies sex differences in asthma.

3. Eosinophils
Eosinophilia is a hallmark of allergic asthma. Increased

eosinophilia has been observed in ovalbumin sensitized
BALB/c female mice compared to males, an effect pre-
vented by depletion of female sex hormones before sensi-
tization (474). Eosinophils are known to bind estradiol
(475, 476); however, no PR or AR expression has been
reported. In response to estrogen, eosinophils degranulate
and increase in adhesiveness (157, 295, 476). Despite
lacking binding sites, progesterone has been shown to
increase eosinophilia-related AHR in ovalbumin-sensi-
tized BALB/c mice (173). This may be attributed to the
conversion of progesterone to estrogen. These limited data
would suggest that female sex steroid-induced eosino-
philia, in combination with steroid effects on T cells,
would help to exacerbate the inflammatory process in fa-
vor of allergic asthma. Whether an opposing role for an-
drogens is present in males is not known.

4. B cells
Activated Th2 cells influence B-cell activation, leading

to increased serum levels of IgE. Here, female sex steroids
may be important because testosterone stimulates mast
cell degranulation (477); however, this effect appears to be
indirect. It is well-documented that women have higher
serum antibody concentrations compared to men. Fur-
thermore, IgE binds mast cells causing degranulation and
the release of histamine, IL-4, and IL-13. IgE levels in
women have been shown to vary with hormonal status
(141), which may play a part in premenstrual asthma ex-
acerbations. Mast cells express both PR subtypes A and B
as well as ER� and ER�, but do not express AR. Proges-
terone inhibits mast cell migration and proliferation and
histamine release (295, 478, 479). Conversely, estrogen
stimulates degranulation and increases histamine secre-
tion in primed mast cells. This is a case where progesterone
antagonizes the effects of estrogen in immune response.
Furthermore, depending on the relative effects of estrogen
vs. progesterone on T cells, eosinophils vs. B cells, the
overall inflammatory response may vary, as may occur in
premenstrual asthma or in pregnancy. There is currently
no information examining these latter issues.

V. Clinical Implications of Sex Differences and
Sex Steroid Signaling

In Sections II, III and IV, we presented an overview of
some of the current knowledge on sex differences in lung
structure and function across the life span in health and
disease and the potential contribution of sex steroids to
such differences. Although much remains to be established
regarding the complex roles of sex steroids in the body in
general, it is clear that sex steroid signaling in lung tissues
should be a major focus of bench and clinical research.
Basic understanding of the mechanisms of sex differences
might not yet be complete, but the physiological impor-
tance of sex differences in lung structure and function have
already been incorporated to a certain extent into clinical
medicinevia theuseof sex-specific values for lung function
corrected for size and age (i.e., predicted values for com-
mon variables in clinical lung function tests). Unfortu-
nately, the correction of these variables for age and size
somewhat minimizes the intrinsic sex differences that exist
in the lung at any given age, although the need for such
corrections is understandable for the purpose of simpli-
fying clinical interpretations (e.g., comparing the growth
of boys vs. girls in the setting of different activity levels,
nutrition, and racial characteristics). An important caveat
is that the statistical models used to produce these param-
eters, while well-fitting in the midrange of age and size, can
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deviate from the actual situation because they do not al-
ways consider the variations in lung parameters at the
onset of puberty and in the timeframes of somatic vs. lung
growth, or the nonlinear relationship between the two
(i.e., dysanapsis). Furthermore, models in adults also
work well in the midrange of age and size (e.g., height), but
not necessarily at the extremes. These caveats result in
overestimation of predicted lung function at the higher
extremes of age but underestimation in the young. Finally,
a majority of the models do not consider race or ethnic
origin in developing the nomograms. Nonetheless, such
nomograms have helped incorporate sex differences in
lung function in clinical medicine and form a platform to
examine variations across individuals as well as changes
with disease. Here, in terms of sex differences, studies are
needed to include factors such as smoking histories (espe-
cially in adolescents, where the female airway may be more
susceptible), reproductive history, family history (includ-
ing genetic factors), and individual variations. Further-
more, age and physical characteristic limits of the predic-
tive models and the need for their update are particularly
relevant today where human life span has been substan-
tially extended, and there is a growing worldwide problem
of obesity along with its associated comorbidities.

Factors that contribute to decreased or impaired lung
structure and function early in development can contrib-
ute to respiratory diseases throughout the life span. Ac-
cordingly, by virtue of their effects on fetal and postnatal
lung development, sex steroids can contribute to fetal,
childhood, pubertal, and adult lung in terms of develop-
ment, growth, and aging (see Section III.F for respiratory
diseases of the newborn, Section III.A for asthma, and
Section III.B for potential contribution to COPD). Alter-
ations in sex steroid levels can influence lung structural
development with significant postnatal consequences,
manifested by diseases such as RDS and BPD early in child-
hood (Section III.F), and asthma in childhood and beyond
(Section III.A). Here, the effect of in utero and childhood
tobacco smoke exposure may be significant. Clinical in-
terventions to minimize maternal smoking during preg-
nancy and postpartum should be encouraged. Indeed, cig-
arette smoking is undoubtedly detrimental to the lung at
all ages. This is only further emphasized by the limited, yet
worrisome, data that there may a link between in utero
exposure to cigarette smoke components and adult dis-
eases such as COPD (Section III.B). And even here, males
and females appear to differ in susceptibility, as suggested
by sex differences in age-related changes in lung function
and the incidence and outcomes of diseases such as COPD
and lung cancer. In this regard, the Lung Health Study
(195) demonstrated the importance of early interventions
in smoking to potentially reverse the declines in flow rates,

even in patients with COPD, with substantially greater
effectiveness in women compared with men [albeit with
some data suggesting greater difficulty for women in
abstaining from smoking (480)]. Considering the on-
going problem of smoking in women (especially ado-
lescents) worldwide, studies should focus on abstinence
and smoking cessation programs in the school and so-
cial environments.

One clinically important area where sex differences
and/or sex steroid effects are highly relevant is allergic
inflammation of the upper and lower airways. As dis-
cussed in Section III.B, atopy can correlate with allergic
rhinitis and asthma. Here, the greater incidence of atopy,
allergic rhinitis, and asthma in prepubertal boys (140,
144) may be intrinsic or due in part to differences in en-
vironmental exposure between girls and boys reflecting
outdoor and recreational activity patterns (145). How-
ever, after puberty, the complex effects of sex steroids
come into play, such that some studies find that the prev-
alence of atopy can remain higher in adult men compared
with women (146), whereas others find a switch in this
pattern (148) and further changes with menopause (149)
that are consistent with the peripubertal and perimeno-
pausal changes in male:female ratio for asthma. Based on
animal data, these patterns are consistent with a protective
role for androgens but a proinflammatory effect of estro-
gens. However, it is important to recognize that interpre-
tation is complicated by the opposing effect of estrogens
on inflammation per se (e.g., see Section IV.E) vs. bron-
choconstriction and bronchodilation (see discussion on
bronchial epithelium and ASM in Section IV.B), the two
elements of diseases such as asthma. These dual effects
may be particularly important in women during periods of
large and/or sustained changes in sex steroid levels, as
exemplified by changes in IgE levels with OC use (Section
III.B) and by changes in asthma symptoms during the
menstrual cycle (premenstrual asthma) and during preg-
nancy (Section III.A). Furthermore, estrogens and proges-
terone seem to sometimes produce similar effects (e.g.,
eosinophil degranulation relevant to rhinitis) and could
thus synergize in their overall effect, whereas in some in-
stances the two sex steroids can have opposing effects (as
in cell proliferation; Section IV.B). Accordingly, depend-
ing on their relative levels, receptor expression, and the
context of exposure, interactions between these steroids
may help explain premenstrual asthma and changes
during pregnancy. Individual genetic and physiological
variations in the asthma phenotype, responsiveness to
sex steroids, and ongoing medications (e.g., steroids or
�-adrenoceptor agonists) may further color the overall
symptomatology. Finally, sex steroid effects on airway
cells may be further modulated by the presence and extent

Endocrine Reviews, February 2012, 33(1):1–47 edrv.endojournals.org 27

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article-abstract/33/1/1/2354750 by guest on 07 April 2020



of inflammation. These complex issues are yet to be sys-
tematically examined. Here, the clinical realm may be
ideal due to the possibility of long-term monitoring and
thus at least a correlative examination of sex steroids and
airway diseases.

The clinical relevance of sex steroids also lies in sev-
eral other lung diseases that show a female predomi-
nance, especially PH. Although PH is multifactorial in
origin, its incidence early in women and its exacerbation
with pregnancy suggest both sex differences and a role
for female sex steroids. Clearly, understanding how
these two aspects contribute to PH will be critical to
management strategies, including informing patients
regarding the risks of pregnancy.

In contrast to diseases such as asthma in adults and PH
with a female predominance, fibrotic lung diseases such as
PF have been considered more common in men (231).
However, the protective vs. detrimental roles of male or
female sex steroids in such diseases are not all clear (Sec-
tion III.D). Given that mortality rates for PF are increasing
more rapidly in women (233), further investigation on sex
hormones and fibrosis is warranted.

The themes of sex differences and the role of sex ste-
roids raise the question of whether (and how) our under-
standing of sex steroids can be used to clinically and phys-
iologically develop biomarkers to diagnose, monitor, and
perhaps treat lung diseases. Measurement of circulating
hormonal levels would certainly be one option, with the
obvious caveat that corrections will need to be made for
age, comorbidities, and in the case of women of childbear-
ing age menstrual or pregnancy status. Furthermore, cir-
culating levels may not necessarily reflect those at the site
of action, where local tissue hormone production may also
play a role. Accordingly, it may be important to test for
enzymes such as aromatase, especially in the lung, where
locally derived hormones may be cell-specific. In addition
to hormone levels, receptor expression and functionality
within the tissue of interest (e.g., bronchial epithelium,
smooth muscle) will be key, especially considering the va-
riety of receptors and the myriad of pathways they can
activate. Finally, it will be important to determine whether
genetic variations and polymorphisms of receptors (or
downstream signaling pathways) play a role in sex differ-
ences in disease presentation and progression. For exam-
ple, there is currently no single nucleotide polymorphism
of ER associated with asthma, but an association with
ER� gene variants has been reported (481). In NSCLC,
ER�, aromatase, and EGFR expression may be predictive
of survival (229, 230). These multimodal clinical testing
approaches are currently available but have not been
widely or systematically implemented for lung diseases.

The therapeutic potential of sex steroids in lung disease
has been barely examined. Here, a simplistic approach of
administering any of these steroids is not feasible due to
their pleiotropic effects. Administration of estradiol and
progesterone to neonates has been attempted for treat-
ment of BPD but was found to be without benefit (270).
Male sex is a risk factor for sepsis and organ failure after
trauma where lung injury is a major complication,
whereas estradiol is protective for women (379, 380, 383,
482–486). In animal studies, estrogen administration to
males or ovariectomized females prevents hemorrhagic
shock-induced sepsis and organ failure and also promotes
wound healing (483, 487–489). Here, estrogen bolsters
the immune response, which is depressed after trauma,
leading to improved survival (490). These estrogen effects
are observed acutely, with estrogen supplementation
given 1 h before experimental injury providing protection
(377, 453). Whether a similar therapy can be used in hu-
mans has never been tested, and the underlying mecha-
nisms of estrogen protection are unknown. However,
these initial studies underline growing interest in the use or
inhibition of sex steroids in the clinical arena.

VI. Future Directions

There are intrinsic differences in the lungs of males vs.
females; however, there is no doubt that right from the
fetal stage, sex steroids (be they locally produced or cir-
culating) have a profound influence on lung development
and etiology of respiratory diseases. These influences
change in extent, target, and effectiveness over the life
span. Current understanding of sex hormone contribution
to lung disease is summarized in Table 3; sex steroid in-
fluences on individual cells in the lung are schematically
represented in Fig. 3. Although much remains to be es-
tablished regarding sex steroid signaling, it is clear that
their role in lung tissues should be a major focus of bench
and clinical research. Here, the goal should be to better
understand the mechanisms by which sex steroids (acting
either genomically or nongenomically) modulate the
structure and function of individual cell types within the
lung under normal conditions and in the presence of other
factors that contribute to lung diseases (e.g., inflamma-
tion, infection, fibrosis). In many situations, estrogen and
progesterone may interact to either enhance or suppress
the other’s action. A specific example of such cooperative
vs. opposing interactions between sex steroids is their ef-
fects on airway cells, relevant to asthma. As schematically
illustrated in Fig. 4 using current (but limited) knowledge
in this area, effects of individual sex steroids on one cell
type may be detrimental to airway structure/function (e.g.,
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estrogen effects on inflammation or epithelial and ASM
proliferation), whereas the same steroid could help alle-
viate symptoms via its effects on another cell type (e.g.,
reducing [Ca2�]i in ASM cells and enhancing bronchodi-
lation). Complicating these effects is the sometimes addi-
tive effect of other sex steroids (e.g., progesterone en-
hancement of inflammation; Fig. 4; also see Fig. 2). This
has particular relevance to lung diseases in women where
cyclical variations in the levels of these steroids as well as
rapid and large changes with pregnancy may explain as-
pects of premenstrual asthma and pregnancy-associated
exacerbations. Furthermore, such interactions may also
be important in the pulmonary vasculature in the devel-
opment of PH and in the interstitium relevant to PF. Even
in males, age-related change in the relative levels of tes-
tosterone vs. estradiol may contribute individually or via
interactions to preexisting lung diseases.

Basic research will help clarify the potential contribution
of sex steroids to lung diseases in men vs. women and form
the basis for the potential development of clinical therapies
that target sex steroid signaling either in a stimulatory or an
inhibitory fashion. Conversely, more clinical work will help
drive the basic research to improve on current therapies and
development of new ones. These areas of research present an
exciting and timely opportunity to improve, enhance, and
individualize the health care provided to women and men at
different times in their life span.

In terms of mechanistic understanding of sex differ-
ences in lung structure or function, a critical stumbling

block is identifying the relative importance of genomic
vs. nongenomic sex steroid signaling in lung tissue. Cer-
tainly, in the area of cancers or cardiovascular disease,
it is the myriad of genomic effects of sex steroids, es-
pecially estrogens, that are considered important, with
the rapid aspects of nongenomic effects being essentially
of intellectual curiosity (with the understanding that
nongenomic effects could lead to eventual changes at
the nuclear level). With regard to the lung, we believe
that both aspects of sex steroid signaling may be im-
portant, as is the case in the vasculature. Rapid, non-
genomic effects may serve to modulate airway or vas-
cular tone, alter the profile of immune cell-derived
factors such as cytokines or chemokines, and by virtue
of triggering a host of signaling pathways (e.g. calcium,
MAPK, cAMP response element-binding) set the stage
of further genomic effects. Genomic effects may occur
on a background of sex steroid concentrations in both
males and females, with variations in steroid levels (e.g.,
menstrual cycle, pregnancy, menopause) leading to ini-
tial nongenomic effects as well as enhancement of on-
going genomic effects. In this regard, responsiveness of
different components of the lung (epithelium vs. smooth
muscle vs. immune cells, for example) may differ, de-
pending on the receptor profile, as well as modulating
factors such as inflammation. These complex issues re-
main to be well-examined.

With the development of rapid automated assay sys-
tems, it may be possible to design and implement bio-

TABLE 3. Sex differences and sex steroid effects in lung diseases

Disease Clinical sex differencea

Hormone effects

Ref.

Clinical Experimental

Alleviates Exacerbates Alleviates Exacerbates

Allergic rhinitis Boys � girls 140, 495
Women1 � men, controversial T (Th1 shift) E2 (Th2 shift), P4? 146–148

Asthma Boys � girls T (dysanapsis) 92–94, 100
Women � men T P4 E2 (Th2 shift) E2,P4 T 43, 93, 98, 99, 101, 102,

122, 174, 175, 177, 396
COPD 185, 188

Airway Women � men E2? 203
Emphysema Men � women P4 202, 360, 364

PH Women � men E2, P4 E2,P4 T 237, 238, 241–243, 256,
412, 414, 434, 441, 496

PF Men � women E2, T E2,T 231, 232, 235, 406
CF Boys�girlsb and men�women E2 273–275, 277, 278
Lung cancer

Adenocarcinoma Women � men P4 T, E2 228, 355, 356, 375
Squamous cell Men � women

E2, Estradiol; P4, progesterone; T, testosterone; ?, clinical data is limited but suggestive.
a Refers to what is observed clinically in human patients and to distinguish this difference from animal models of disease using male vs. female specimens, because they
do not always correspond with what is observed clinically.
b Although CF incidence shows little sex difference, girls are usually at higher risk for infection and mortality.

Endocrine Reviews, February 2012, 33(1):1–47 edrv.endojournals.org 29

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article-abstract/33/1/1/2354750 by guest on 07 April 2020



marker assays for circulating and tissue hormone levels
as well as receptor expression (or even their variants)
and downstream signaling pathways. Responsiveness of
cells and tissues from individuals to sex steroids, either alone or
in combination, may then be examined to tailor therapies.

The lung is a unique organ for drug delivery, in that
inhalation of pharmacological agents or other drug deliv-
ery systems can help achieve high local levels, but not
necessarily high systemic levels. Accordingly, targeted de-
livery of agents that modulate sex steroid signaling to spe-

cific cell types is an attractive option. With advances in
elucidating the genomic and nongenomic mechanisms of
sex steroids on lung cell physiology, possible therapeutics
involving these avenues are entirely possible, including
modulation of eNOS-induced vaso- and bronchodilation
by estrogen, immune response Th1/Th2 switching by an-
drogens, calcium-induced smooth muscle relaxation via
progesterone and testosterone, and inhibition of prolifer-
ation via ER antagonists or progesterone therapy. Indeed,
modulation of estrogen signaling is being explored for PH

Figure 3.

Figure 3. Summary of sex steroid effects on individual cell types of the lung. Many cell types are involved in the pathogenesis of lung disease.
Therefore, individual effects of sex steroids must be integrated to achieve a better understanding of sex hormone effects in the manifestation,
exacerbation, or alleviation of these diseases as a whole. Androgens, estrogen, and progesterone can have different effects at the cellular level
that are concentration-, dose-, and time-dependent (which are described in the text). In general, progesterone and estrogen can either enhance or
counterbalance their mutual effects in the female, whereas androgens generally have opposing effects, compared with estrogen, in the male.
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and lung cancer (208, 217, 239, 253) where therapies in-
volving predominantly estrogen signaling have examined
the role of this hormone in aberrant cellular proliferation.

The use of OC in attenuating premenstrual asthma ex-
acerbations has had varying results, but it highlights the

potential of sex steroid pathways as an alter-
native therapeutic pathway beyond standard
approaches such as glucocorticoids and �-ad-
renoceptor agonists. For example, in ongoing
studies in human ASM, we have found that
estrogens can potentiate �-adrenoceptor sig-
naling in terms of reducing [Ca2�]i, thus facil-
itating bronchodilation (E. A. Townsend and
Y. S. Prakash, unpublished observations). Al-
though these preliminary explorations suggest
a novel approach to bronchodilation, these
data need to be verified, and a number of hur-
dles still need to be overcome before the po-
tential for use in humans is even considered.
Obviously, targeting of cells such as bronchial
and alveolar epithelium, innervation, smooth
muscle and pulmonary vasculature requires
different approaches. Furthermore, due to the
somewhat ubiquitous expression of sex steroid
receptors within the lung, targeting of specific
cell types relevant to a disease is not straight-
forward. However, novel technologies such as
nanoparticles and promoter-driven expression
systems may be helpful. Another important ca-
veat is the complex interactions between sex
steroids within a cell type (illustrated in Fig. 2
for immune cells, Fig. 3 across different cell
types, and Fig. 4 as such interactions relate to
asthma), as well as interactions with factors
such as inflammatory mediators or infectious
agents, which may limit efficacy of therapeutic
agents or result in unintended effects. Further-
more, from studies in the cardiovascular sys-
tem, it is clear that the effects of estrogens can
vary by individual due to genetic variations in
receptor structure/function, downstream sig-
naling, and metabolism of the drug. Finally,
studies in humans and animals on the vascular
effects of estrogens suggest that timing of hor-
mone treatment is important to achieve pre-
ventive and treatment goals. All of these im-
portant, complex issues remain to be examined
in the lung.

VII. Conclusions

There is increasing evidence that sex differ-
ences in the lung exist at every level from intracellular
signaling through whole organ structure and function. Sex
differences occur not only under normal conditions, but
also in a variety of lung diseases. Furthermore, sex differ-

Figure 4.

Figure 4. Sex steroid effects in asthma. The complex effects of individual sex steroids on
specific cell types of the lung, as well as cooperative vs. opposing effects of different sex
steroids within a cell type, are illustrated in the case of asthma (with the caveat that
current knowledge of sex steroid effects in asthma is limited). Asthma represents an
inflammation-driven response of the airway to environmental or intrinsic allergens,
pollutants, and other factors such as cigarette smoke. In response, the airway undergoes
structural changes represented by epithelial thickening with increased mucous
production, ASM proliferation, and hyperreactivity, as well as remodeling of the
extracellular matrix. Sex steroids, especially estrogens, may on the one hand have
detrimental effects on airway structure/function by enhancing inflammation or epithelial
and ASM proliferation, while also alleviating symptoms via reducing [Ca2�]i in ASM and
thus enhancing bronchodilation. Complicating these effects is the sometimes additive,
sometimes opposing, effect of other sex steroids. For example, progesterone may also
enhance Th2 inflammation and cell proliferation but further bronchodilation. On the
other hand, estrogen and progesterone have opposing effects on eNO. In general,
testosterone has effects opposite to those of female sex steroids (but note the
enhancement of ASM proliferation).
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ences arise as a result of intrinsic differences as well as
complex effects of sex steroids. Modulation of lung struc-
ture and function by sex steroids appears to be not just a
feature of the postpubertal period, but also occurs even
during lung development and continues throughout the
life span, albeit in different, complex, and incompletely
understood ways. Here, the type of sex steroid, concen-
tration, duration of exposure, and a myriad of factors
appear to be involved in determining the overall effect on
lung structure or function. Although much remains to be
established regarding intrinsic sex differences or the effects
of sex steroids, what is now clear is that, consistent with the
2001 IOM report on the importance of sex in human
health (“Exploring Biological Contributions to Human
Health-Does Sex Matter?” http://www.nap.edu/openbook.
php?isbn�0309072816), sex is clearly a biological vari-
able rather than an observational feature to consider both
in bench and clinical research, as well as in medical prac-
tice. Here, the study and implementation of sex differences
in the respiratory system clearly lags behind current
knowledge in other nongonadal organ systems such as the
heart, the systemic vasculature, the brain, and the endo-
crine system. However, there is much hope that the in-
creasing attention to this topic, as evidenced by the num-
bers of publications in this area over the past 10 yr, will
bring about a change in the research and clinical culture as
it relates to lung disease.
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