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Abstract

The primary female sex hormones, estrogens, are responsible for the control of
functions of the female reproductive system, as well as the development of secondary
sexual characteristics that appear during puberty and sexual maturity. Estrogens exert
their actions by binding to specific receptors, the estrogen receptors (ERs), which in turn
activate transcriptional processes and/or signaling events that result in the control of
gene expression. These actions can be mediated by direct binding of estrogen receptor
complexes to specific sequences in gene promoters (genomic effects), or by mecha-
nisms that do not involve direct binding to DNA (non-genomic effects). Whether acting
via direct nuclear effects, indirect non-nuclear actions, or a combination of both,
the effects of estrogens on gene expression are controlled by highly regulated
complex mechanisms. In this chapter, we summarize the knowledge gained in the past
60years since the discovery of the estrogen receptors on the mechanisms governing
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estrogen-mediated gene expression. We provide an overview of estrogen biosynthesis,
and we describe themainmechanisms by which the female sex hormone controls gene
transcription in different tissues and cell types. Specifically, we address the molecular
events governing regulation of gene expression via the nuclear estrogen receptors
(ERα, and ERβ) and the membrane estrogen receptor (GPER1). We also describe
mechanisms of cross-talk between signaling cascades activated by both nuclear and
membrane estrogen receptors. Finally, we discuss natural compounds that are able
to target specific estrogen receptors and their implications for human health and
medical therapeutics.

1. Estrogens: Definition and history

The term “estrogens” refers to a group of female hormones, including

estrone, estradiol, estriol, and estretrol (Fig. 1). Chemically, estrogens belong

to the family of organic compounds known as steroids. As such, their core

structure is composed of 17 carbon-carbon bonds arranged as four fused

rings (three cyclohexane rings and a cyclopentane ring). All four estrogens

contain 18 carbons (C18H24O2) and are collectively known as C18 steroids.

They consist of one benzene ring, a phenolic hydroxyl group, and a ketone

group (estrone), or one (17β-estradiol), two (estriol), or three (estretrol)

hydroxyl groups.

Fig. 1 Chemical structures of endogenous estrogens. Estrone (E1; orange), estradiol
(E2; blue), estriol (E3; green) and estretrol (E4; yellow).
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Estrogens are primarily synthesized in the ovaries, but also in the adrenal

glands and adipose tissue. They were discovered in the early 1900s, when

ovarian extracts (“liquor folliculi”) from cattle and hogs were injected in

rodents, and found to be effective in inducing sexual activity or “estrus”

(Allen & Doisy, 1983). It was later determined that the hormone was pro-

duced bymature ovarian follicles, and that it was likely common to all female

animals. The term estrogen derives from the Greek words oistros (frenzy, in

heat) and gennan (to produce). As mentioned above, estrogens are a group of

C18 hormones with similar chemical structures and function (Fig. 1). In

addition, all four estrogens are able to bind to both nuclear and membrane

estrogen receptors, with different affinity and strength of the response

(Watson, Jeng, & Kochukov, 2008). However, the word estrogen is com-

monly used to refer to estradiol (or 17β-estradiol), due to its physiological

relevance and predominance during reproductive years. While females

produce all estrogens throughout life, the hormones 16-hydroxyestradiol

(estriol) and 15α-hydroxyestriol (estretrol) are predominantly found during

pregnancy, and estrone is usually found at higher levels during menopause

(Samavat & Kurzer, 2015).

Estradiol, the predominant circulating estrogen in humans, it is mainly

secreted by the granulosa cells of the ovarian follicles, and the corpora lutea.

On the other hand, estretrol is synthesized exclusively by the fetal liver and

reaches maternal circulation through the placenta (Coelingh Bennink,

Holinka, Visser, & Coelingh Bennink, 2008; Holinka, Diczfalusy, &

Coelingh Bennink, 2008). Estrone, which is produced by aromatization

of androstenedione in extraglandular tissues, can be reversibly transformed

to estradiol by the enzyme 17β-hydroxysteroid dehydrogenase in peripheral
tissues (Bulun, Zeitoun, Sasano, & Simpson, 1999; RYAN, 1959).

2. Estrogen biosynthesis

Themain substrate for steroidhormonebiosynthesis is dietarycholesterol,

specifically low-density lipoprotein (LDL)-cholesterol (Carr, MacDonald, &

Simpson, 1982). Through a process called steroidogenesis, cholesterol is

converted to the 21-carbon (pregnanes, progestogens), 19-carbon (andro-

stanes), and 18-carbon (estranes) steroid hormones in gonads, adrenal cor-

tex, and adipose tissue (Miller, 2017). The main site of estrogen synthesis

is the ovaries, and specifically the granulosa cells (Fig. 2).

The first step in the biosynthesis of steroid hormones is the translocation

of cholesterol into the inner mitochondrial membrane, a process regulated
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by the steroidogenic acute regulatory protein STARD1 (also known as

StAR), which is believed to act as a shuttle enzyme (Miller & Strauss,

1999). This is the rate-limiting step of steroidogenesis in all tissues. The

expression of StAR is controlled by a mechanism involving binding of

luteinizing hormone (LH) to its G protein-coupled receptor in the theca

cells of the ovary and stimulation of adenylate cyclase, which catalyzes

the production of cyclic adenosine monophosphate (cAMP) from adenosine

triphosphate (ATP). The cAMP produced activates protein kinase A, which

catalyzes phosphorylation of cAMP response element binding protein

(CREB) leading to activation of transcription of StAR and other factors

associated with steroid hormone production (Fig. 2). At the inner mitochon-

drial membrane, cholesterol is converted to pregnenolone by the enzyme

P450scc, or cholesterol side-chain cleavage enzyme, encoded by the

CYP11A1 gene (Belfiore, Hawkins, Wiltbank, & Niswender, 1994). Preg-

nenolone then acts as a precursor for all steroid hormones (Fig. 3), and can

diffuse between adjacent granulosa and theca cells of the ovary. The

synthesis continues with the conversion of pregnenolone to androstene-

dione by the enzymes CYP17A1 (steroid 17-α-hydroxylase/17,20-lyase)
and 3β-HSD (3β-hydroxysteroid dehydrogenase/Δ5-4 isomerase), via

dehydroepiandrosterone (DHEA). Androstenedione can be either converted

Fig. 3 Estrogen biosynthesis pathway. The estrogen biosynthetic pathway involves
the conversion of cholesterol to progestogens, androgens and finally estrogens. The
conversion of androgen to estrone (E1) and estradiol (E2) catalyzed by aromatase is
the final step for synthesis of estrogen.
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to other androgens, such as testosterone and dihydrotestosterone, or diffuse to

the granulosa cells through the basal lamina (Fig. 2). At the granulosa cells,

androstenedione is converted to estrone by the enzyme CYP19A1 (also

known as aromatase). Estrone is then converted to estradiol by the enzyme

17β-HSD (17β-hydroxysteroid dehydrogenase). In the granulosa cells, the

expression of both aromatase and 17β-HSD is controlled by follicle stimulat-

ing hormone (FSH) stimulation. Interestingly, testosterone can be metabo-

lized to estradiol and estrone by the action of aromatase in peripheral

tissues, including adipose cells and bone (Simpson et al., 2002).Males also pro-

duce local estrogen by aromatization in cells of the reproductive tract, includ-

ing Sertoli cells, Leydig cells, andmature spermatocytes. Overall, estrogens are

normally produced by the ovaries and in smaller amounts by other tissues such

as the liver, pancreas, adrenal glands, adipose tissue, and breast (Barakat,

Oakley, Kim, Jin, & Ko, 2016). In specific physiological conditions, such

as pregnancy, estrogen is also synthesized by the placenta. However, the bio-

synthesis of estrogen in non-gonadal sites follows rather unusual mechanisms,

since these tissues are not able to generate C19 steroids from cholesterol. In

these tissues, estrogen production is largely dependent on C19 steroids trans-

ported from other tissues and conversion by local CYP19A1 aromatase

(Labrie et al., 1998; Nelson & Bulun, 2001).

Estradiol, the predominant circulating estrogen in humans, it is mainly

secreted by the granulosa cells of the ovarian follicles, and the corpora lutea,

by the mechanisms indicated above. On the other hand, estretrol is synthe-

sized exclusively during pregnancy by the fetal liver and reaches maternal

circulation through the placenta (Coelingh Bennink et al., 2008; Holinka

et al., 2008). Estriol, which is also primarily synthesized during pregnancy,

is almost exclusively produced by the placenta. To produce estriol, dietary

cholesterol is converted to pregnenolone and progesterone in the placenta,

and these steroids are further metabolized to DHEA and DHEA-sulfate

(DHEA-S) in the fetal adrenal glands. DHEA-S is later hydroxylated to

16α-OH-DHEA-S in the fetal liver by the action of the CYP3A7 enzyme,

and transported back to the placenta where it is converted to 16α-OH-DHEA

by the steroid sulfatase. The enzyme 3β-HSD1 converts 16α-OH-DHEA into

16α-OH-androstenedione, which is later aromatized to 16α-OH-estrone. In

the final step, 16α-OH-estrone is converted to estriol by the 17β-HSDenzyme,

and secreted into maternal circulation (ITTRICH & NEUMANN, 1963;

WILSON, ERIKSSON, &DICZFALUSY, 1964). In non-pregnant women,

estriol is produced mainly in the liver by 16α-hydroxylation of estradiol and
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estrone by CYP enzymes (Samavat & Kurzer, 2015; Tsuchiya, Nakajima, &

Yokoi, 2005). Finally, estrone ismainly producedduringmenopause by aroma-

tizationof androstenedione in extra-glandular tissues,where it can act locally as a

paracrine or intracrine factor (Simpson, 2003). Estrone can also be transformed

to estradiol by the enzyme 17β-hydroxysteroid dehydrogenase in peripheral

tissues, including adipose and breast tissue, vascular endothelium, smooth

muscle cells, brain tissue, and bone cells, where it is metabolized or enters

the circulation in small quantities (Bulun et al., 1999; RYAN, 1959;

Simpson, 2003).

3. Estrogen metabolism

Physiologically, the metabolic conversion of estrogens allows their

excretion from the body via urine, feces, and/or bile, along with the produc-

tion of estrogen analogs, which have been shown to present antiproliferative

effects (Tsuchiya et al., 2005). In target cells, there are different pathways capa-

ble of metabolizing estradiol and estrone. Members of the cytochrome P450

superfamily of enzymes (CYP1A1, CYP1B1, and CYP1A2) catalyze hydrox-

ylation of estrone and estradiol at positions C2, C4 and C16. Due to the

high expression of these enzymes in the liver, a large proportion of estrogen

metabolism occurs in this tissue, although CYP1B1 is also expressed in target

tissues such as mammary gland, uterus, kidney, brain, and pituitary gland,

where estradiol and estrone can also be metabolized. Estradiol hydroxy-

lation is followed by conversions to 2-hydroxyestrone, 4-hydroxyestrone,

2-hydroxyestradiol, 4-hydroxyestradiol, and 16α-hydroxyestrone, which

are also known as catechol estrogens, due to their presence of pharmacological

properties of both catecholamines and estrogens. The hydroxylation of estra-

diol or 16α-hydroxyestrone forms estriol. In addition, catechol estrogens can

be methylated via the catechol-O-methyltransferase (COMT) enzyme to

methoxy estrogens (Samavat & Kurzer, 2015). These compounds have gained

significant attention due to their little estrogenic effects, antiproliferative

properties, and ability to control estrogen synthesis (Purohit & Reed, 2002;

Purohit et al., 2006). Moreover, catechol estrogens can also be conjugated

by estrogen sulfotransferases and UDP-glucuronyltransferases (Cheng et al.,

1998; Garbacz, Jiang, & Xie, 2017). In a conjugation reaction, hormones

become water soluble and excreted from the body (Lakhani, Venitz, Figg, &

Sparreboom, 2003).
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4. Physiological functions of estrogens

Estrogens are sex steroid hormones, and as such display a broad spec-

trum of physiological functions. These include regulation of the menstrual

cycle and reproduction, bone density, brain function, cholesterol mobiliza-

tion, development of breast tissue and sexual organs, and control of inflam-

mation (Liang & Shang, 2013). While estrogens play diverse roles in normal

male and female physiology, in certain physiological situations they can play

similar roles in both sexes (Simpson et al., 2005). In females, estrogens are

responsible for primary and secondary sexual characteristics. Estradiol pro-

motes epithelial cell proliferation in the uterine endometrium andmammary

glands starting in puberty (Gruber, Tschugguel, Schneeberger, & Huber,

2002; Koos, 2011; Simpson et al., 2005). During pregnancy, estrogens pro-

duced by the placenta help prepare the mammary gland for milk production

(Voogt, 1978). On the other hand, lower levels of estrogens produced in

men are essential for functions including spermmaturation, erectile function

andmaintenance of a healthy libido (Schulster, Bernie, &Ramasamy, 2016).

It is important to mention here that all the estrogenic physiological functions

previously described are mediated by estrogen receptors, which we describe

in the next sections.

5. The estrogen receptors: History and discovery

In 1958, Elwood Jensen discovered the estrogen receptor, the first

receptor ever encountered for any hormone, by showing that reproductive

female tissues were able to uptake estrogen from the circulation by binding

to proteins. He later demonstrated that estrogen-bound receptors were

able to migrate to the nucleus, where they could stimulate gene transcrip-

tion ( Jensen et al., 1967; Jensen et al., 1968). More than 20years later,

the first human estrogen receptor (known today as ERα) was cloned using

RNA from the human breast cancer cell line MCF-7 (Green et al., 1986;

Greene et al., 1986). Similarly, the second estrogen receptor (known

today as ERβ) was described 10 years later by the research team lead by

Dr. Jan-Ake Gustafsson (Kuiper, Enmark, Pelto-Huikko, Nilsson, &

Gustafsson, 1996). Gustafsson’s lab discovered that a newly identified pro-

tein that was mainly expressed in the secretory epithelial cells of the pros-

tate and in the granulosa cells of the ovary, shared a high degree of
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homology with the ERα (DNA-binding domain, 95%; ligand-binding

domain, 55%). As a result of these similarities, the team suggested for

the protein be named ERβ.
More recently, a new type of estrogen binding protein was discovered in

target cells: The G Protein-Coupled Estrogen Receptor GPER1, or mem-

brane estrogen receptor. Unlike the nuclear estrogen receptors ERα and

ERβ, which were isolated by traditional biochemical approaches, GPER1

was identified by molecular cloning methods (Filardo & Thomas, 2012).

Almost two decades ago, several research laboratories had reported the

isolation of a G Protein-Coupled Receptor homolog, which was ascribed

the orphan term GPR30 (Carmeci, Thompson, Ring, Francke, &

Weigel, 1997; Feng & Gregor, 1997; Kvingedal & Smeland, 1997;

O’Dowd et al., 1998; Owman, Blay, Nilsson, & Lolait, 1996; Takada,

Kato, Kondo, Korenaga, & Ando, 1997). It was assumed that the ligand

for GPR30 was a hormone or chemotactic peptide due to its structural sim-

ilarities to the receptors for angiotensin II and other peptides such as such as

interleukin-8, monocyte chemotactic proteins, and complement factors

(Filardo & Thomas, 2012). However, after screening of multiple chemotac-

tic peptides and factors, no molecules with binding affinities to GPR30 were

found, the receptor continued to be classified as orphan (Feng & Gregor,

1997). However, in the year 2000, a research team was able to show that

fast estrogen-mediated activation of extracellular signal-regulated kinases

(ERKs) was dependent on GPR30 (Filardo, Quinn, Bland, & Frackelton,

2000). Five years later, this and other groups were able to demonstrate direct

binding of 17β-estradiol to GPR30 in GPR30-transfected cells and breast

cancer cell lines (Revankar, Cimino, Sklar, Arterburn, & Prossnitz, 2005;

Thomas, Pang, Filardo, & Dong, 2005). Finally, in 2007 GPR30 was offi-

cially named G protein-coupled estrogen receptor 1 (also known as GPER

or GPER1), and its role in mediating fast responses to estrogens and overall

physiological and pathological processes has been studied extensively in

human and animal models (Boonyaratanakornkit & Edwards, 2007; Filardo

et al., 2007; Molina, Figueroa, Bhoola, & Ehrenfeld, 2017; Prossnitz &

Barton, 2014; Sharma & Prossnitz, 2016).

6. Structural properties of estrogen receptors

The full-length size of ERα is 595 amino acids and 67kDa. ERβ is 530
amino acids in length and 59kDa. The main difference between the two

proteins is that ERβ has a shorter amino terminal domain than ERα (Fig. 4).
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As members of the nuclear hormone receptors superfamily of transcrip-

tion regulators, the structures of the estrogen receptors ERα and ERβ are

composed of various functional domains and have several structural regions

in common (Schwabe & Teichmann, 2004). The principal functional

domains are termed A/B, C, D, and E/F, and are present in both receptor

full-length structures (Fig. 4). The A/B region represents the amino-

terminal domain (NTD), which is involved in gene transcription trans-

activation, and contains a zinc-finger that mediates binding to target

sequences. The C region corresponds to the DNA binding domain

(DBD), which contributes to estrogen receptor dimerization and binding

to specific sequences in the chromatin. These canonical sequences known

collectively as estrogen response elements (ERE) (Scheidereit et al., 1986;

Truss & Beato, 1993). The D domain is a hinge region that connects the

C and E domains, and is able to bind to chaperone proteins. This region also

contains the nuclear localization signal, that is unmasked upon estrogen

binding, allowing for the receptor-ligand complexes to translocate to the

nucleus. In the carboxy-terminal E/F region, also known as the ligand bind-

ing domain, contains the estrogen binding area, along with binding sites for

coactivators and corepressors. Finally, two additional regulators of the estro-

gen receptor transcriptional activity known as activation function (AF)

domains AF1 and AF2, are located within the NTD and DBD, respectively

(Kumar et al., 2011). Themechanisms of transcriptional regulationmediated

by these receptors appear to involve a synergistic effect of AF1 and AF2

(Tora et al., 1989). Contrarily to AF2, AF1 does not require binding to hor-

mones or steroids to be activated (Kumar et al., 2011).

In humans, the ERα is encoded by the gene ESR1, located on chromo-

some 6, locus 6q25.1 (Gosden, Middleton, & Rout, 1986). In addition to

Fig. 4 Structural organization of estrogen receptors. Structural domains of estrogen
receptor α (ERα) (595 aa) and ERβ (530 aa) are labeled A-F. Both receptors have six
different structural and functional domains: N- terminal (NTD, A/B domains, AF-1),
DNA binding domain (DBD, C domain), the hinge (D domain), the C-terminal region
containing the ligand binding domain (LBD, E/F domain, AF-2).
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the full-length ERα isoform (66kDa), several shorter isoforms (36kDa,

46kDa) have been identified as a result of the presence of alternate start

codons, or as productos of alternative splicing (Fig. 5). Some of these shorter

isoforms do not have the NTD and thus lack the AF-1 domain. Therefore,

they cannot activate transcription. Instead, they are able to form heterodimers

with the full-length ERα and inhibit its ability to control transcriptional.

The shorter isoform, ERα-36, lacks both AF-1 and AF-2 transcriptional

activation domains, and it has been shown to exert membrane-initiated sig-

naling events upon binding to estradiol, estriol, and estretrol (Gu et al., 2014),

as well as to medicate GPER1 responses (Arnal et al., 2017; Romano &

Gorelick, 2018).

On the other hand, ERβ is encoded by the ESR2 gene located in chro-

mosome 14 (14q23–24), and has five known isoforms (Enmark et al., 1997)

(Fig. 6). The main difference between the full-length ERβ and the shorter

ERβ isoforms is on the C-terminal LBD. Therefore, ERβ isoforms that have

no transcriptional activity can also suppress ERα signaling by dimerizing

with ERα (Vrtačnik, Ostanek, Mencej-Bedrač, & Marc, 2014).

Finally, the gene coding for the membrane receptor GPER1 is located in

chromosome 7 (locus 7p22.3). In terms of structure, GPER1 does not share

similarities with ERα or ERβ. As a typical G protein coupled receptor,

its structure consists of 7 transmembrane α-helical regions, 4 extracellular

segments, and 4 cytosolic segments (Barton et al., 2018). This receptor

Fig. 5 Estrogen receptor alpha (ERα) isoforms. The domain organization of the
full-length 595 amino acid ERα (67kDa), and truncated shorter isoforms (62kDa,
53kDa, 46kDa, 45kDa, and 36kDa) resulting from alternative splicing and/or alternate
translation start sites are illustrated. Protein domains are labeled as A to F with numbering
denoting amino acid sequence number based on the full-length protein (595 aa). ERα
domains: N-terminal (NTD, A/B domains, AF-1), DNA binding domain (DBD, C domain),
hinge (D) domain, and C-terminal region containing the ligand binding domain (LBD,
E/F domain, AF-2).

145Estrogen receptor signaling



has low binding affinity (17B-estradiol) when compared to other estrogen

receptors (Prossnitz & Barton, 2014). However, this may be important as

GPER1 is accountable for rapid responses to estrogen, and activation of

intracellular signaling cascades mediated by second messengers (Filardo &

Thomas, 2012).

7. Mechanims of estrogen receptor signaling

As a steroid hormone, estrogen can enter the plasma membrane and

interact with intracellular ERα and ERβ to exert direct effects by binding

to DNA sequences. Alternatively, estrogen can activate intracellular signal-

ing cascades via interaction with the GPER1 and/or ERα and ERβ. Due to

differences in the cellular and molecular events leading to gene expression

regulation in which estrogen-receptor complexes can either bind directly

or indirectly to DNA, estrogen-mediated signaling events ca be divided into

genomic and non-genomic. Genomic effects are those involving migration

of the estrogen-receptor complexes to the cell nucleus, and direct interac-

tion with chromatin at specific DNA sequences known as estrogen response

elements (EREs). While EREs have been identified in several gene pro-

moters and regulatory regions, it has been reported than more than one third

of human genes regulated by estrogen receptors do not contain ERE

sequence elements (O’Lone, Frith, Karlsson, &Hansen, 2004). On the other

Fig. 6 Estrogen receptor beta (ERβ) isoforms. The domain organization of the full-length
530 amino acid ERβ (59kDa), truncated shorter isoforms (54kDa, 49kDa, and 44kDa),
and elongated isoform (61kDa), resulting from alternative splicing and/or alternate
translation start sites are illustrated. Protein domains are labeled as A to F with number-
ing denoting amino acid sequence number based on the full-length protein (595 aa).
ERβ domains: N-terminal (NTD, A/B domains, AF-1), DNA binding domain (DBD,
C domain), hinge (D) domain, and C-terminal region containing the ligand binding
domain (LBD, E/F domain, AF-2).
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hand, non-genomic effects involve indirect regulation of gene expression

through a variety of intracellular signaling events. The known mechanisms

for genomic and non-genomic control of gene expression by estrogens are

described below.

8. Nuclear estrogen receptors: Direct genomic signaling

Direct genomic signaling is known as the classical mechanism of estro-

gen signaling. In this process, the nuclear estrogen receptors ERα and ERβ
act as ligand-activated transcription factors (Marino, Galluzzo, & Ascenzi,

2006; O’Malley, 2005). Upon binding of estradiol to ERα or ERβ in the

cytoplasm, a conformational change occurs inducing receptor dimerization

(Le Dily & Beato, 2018(Fig. 7). This complex is then translocated to the

nucleus, where it binds to the chromatin at ERE sequences, enhancer

regions within or close to promoters, and/or 30-untranlated regions of target

genes (Klinge, 2001).

Recent advances in computational biology have facilitated the identifi-

cation of EREs in many gene promoters, and allowed prediction of genes

regulated by estrogen and other hormones in the genomes of many species

(Bajic et al., 2003; Bourdeau et al., 2004). A recent genome-wide screening

study identified over 70,000 EREs in the human and mouse genomes

(Bourdeau et al., 2004). Interestingly, 17,000 of these EREs were located

near mRNA transcriptional start sites, and only 660 were conserved sites.

The efficacy of this computational approach was further supported by func-

tional validation of estrogen receptor interaction sites (Carroll & Brown,

2006). While these elements share a high degree of sequence similarity, it

is important to recognize that the intrinsic sequence composition of the

EREs can alter the affinity of the receptor to bind DNA. For example,

ERα has a high binding affinity for the canonical ERE sequence located

within the vitellogenin A2 gene, but with less affinity for the EREs located

in the oxytocin gene (Sausville, Carney, & Battey, 1985). This moderately

explains why differences in ERE sequences, such as those resulting from inter-

individual gene variability or mutations, can affect the activation of gene

expression (Loven,Wood, &Nardulli, 2001; Yi et al., 2002). In addition, spe-

cific ERE sequences can cause allosteric changes in the receptor’s structure,

and thus alter the ability of the complex to recruit coactivators and transcrip-

tion factors that may contribute to ER biological activity (Hall,McDonnell, &

Korach, 2002; Yaşar, Ayaz, User, G€up€ur, & Muyan, 2017).
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9. Nuclear estrogen receptors: Indirect genomic
signaling

As mentioned earlier, the transcription of several genes that do not

contain EREs in their promoter regions can also be regulated by estradiol,

without direct binding of the estrogen receptors to the DNA. According to

the most recent reports, an estimated 35% of genes targeted by estrogen lack

ERE-like sequences (Marino et al., 2006; Vrtačnik et al., 2014). In these, the

mechanisms by which estrogen affects gene expression are collectively

Fig. 7 Genomic and non-genomic estrogen signaling pathways. There are different
estrogen-mediated signaling mechanisms. (1) Direct genomic signaling: estrogen binds
to ERs. The complex dimerizes and translocate to the nucleus inducing transcriptional
changes in estrogen-responsive genes with or without EREs. (2) Indirect genomic sig-
naling: the membrane bound receptor induces cytoplasmic events such as modulation
of membrane-based ion channels, second-messenger cascades and transcription
factors. (3) ER-independent: estrogen exerts antioxidant effects in an ER-independent
manner. (4) Estrogen independent: ligand-independent genomic events.
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known as “indirect genomic signaling” or “transcriptional cross-talk”, and

are based on activation of gene expression by estrogen receptors not binding

DNA directly. Rather, the estrogen receptor complexes act through

protein-protein interactions with other transcription factors and response

elements (Aranda & Pascual, 2001; G€ottlicher, Heck, & Herrlich, 1998).

In this way, estrogens indirect signaling influences activation or suppression

of target gene expression.

An important mediator of indirect genomic signaling is the stimulating

protein-1 (Sp-1). Binding of this transcription factor to promoter regions at

GC-rich sites is enhanced by the presence of estrogen receptors (Bajic et al.,

2003; O’Lone et al., 2004). Examples of genes induced by estrogen via the

Sp-1 mechanism are: low-density lipoprotein (LDL) receptor (Li, Briggs,

Ahlborn, Kraemer, & Liu, 2001), progesterone receptor B (O’Lone et al.,

2004), endothelial nitric oxide synthase (eNOS) (Chambliss & Shaul,

2002), GATA binding protein 1 (GATA1), signal transducer and activator

of transcription 5 (STAT5) (Bj€ornstr€om & Sj€oberg, 2005), and the retinoic

acid receptor-1α genes (Sun, Porter, & Safe, 1998). A few studies have

shown that ERα can also interact with the c-rel subunit of the nuclear

factor-κB (NF-κB) complex, preventing NF-κB from binding to cytokine

genes promoters (Galien & Garcia, 1997; Kalaitzidis & Gilmore, 2005).

Moreover, ERα can also interact with other transcriptional modulators such

as the activating transcription factor (ATF)-2, c-jun, the ATF-1/cAMP

response element binding protein (ATF-1/CREB), and the nuclear tran-

scription factor-Y (NF-Y) (O’Lone et al., 2004).

The nuclear estrogen receptors also induce the expression of genes con-

taining the activator protein-1 (AP-1) sites though protein-protein interac-

tions (Gaub, Bellard, Scheuer, Chambon, & Sassone-Corsi, 1990). AP-1 is a

transcription factor that regulates key cellular processes such as cell differen-

tiation, proliferation, and apoptosis. The structure of AP-1 consists of a

heterodimer composed of proteins belonging to the c-Fos, c-Jun, ATF,

and the Jun dimerization partners (JDP) families (Piu, Aronheim, Katz, &

Karin, 2001). The ERα also interacts with c-Fos and c-Jun at these binding

regions (O’Lone et al., 2004). Some examples of genes induced by ERα via

the AP-1 mechanism are insulin-like growth factor-1 (IGF1), collagenase,

IGF1-receptor, ovalbumin, and cyclin D1 (Fujimoto, Honda, & Kitamura,

2004; Marino, Acconcia, Bresciani, Weisz, & Trentalance, 2002). However,

previous studies have shown that ERα and ERβ signal in different ways

depending on the ligand and response elements present at the AP-1 sites.

In fact, 17β-estradiol activates AP-1-dependent transcription via ERα,
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whereas ERβ inhibits this mechanism (Paech et al., 1997). Likewise, 17β-
estradiol binding to ERα induces transcription when linked to Sp-1 in

GC-rich regions, but not when 17β-estradiol is bound to ERβ. One example

of this is the contrasting action of ERα and ERβ on the control of cyclin D1

gene expression (Liu et al., 2002), where estrogen-bound ERβ suppresses

cyclin D1 expression (Marino et al., 2006) and blocks ERα-mediated produc-

tion when both receptors are present (Acconcia et al., 2005; Matthews &

Gustafsson, 2003). The diversity of mechanisms of transcriptional regulation

in different cells by the two estrogen receptors and their interactions with local

transcription factors may explain the differences observed in tissue specific

biologic responses to estrogens.

10. Membrane receptor: Indirect non-genomic
signaling

As mentioned above, not all estrogen responses fit the classical geno-

mic model of steroid action. The observation of excessively fast estrogen-

induced biological responses led to the development of the hypothesis that

estrogen could be acting by mechanisms not involving direct target gene

transcription and protein synthesis, and the subsequent discovery of the

GPER1 (Prossnitz & Barton, 2011). Non-genomic actions of estrogen often

involve activation of signal-transduction mechanisms with the subsequent

production of intracellular second messengers, cAMP regulation and

protein-kinase activation of signaling cascades that result in indirect changes

in gene expression (L€osel &Wehling, 2003) (Fig. 7). The protein-kinase cas-

cades can be classified into four major ones: (1) the phospholipase C (PLC)/

protein kinase C (PKCs) pathway (Marino, Pallottini, & Trentalance, 1998),

(2) the Ras/Raf/MAPK cascade (Dos Santos et al., 2002; Watters, Campbell,

Cunningham, Krebs, & Dorsa, 1997), (3) the phosphatidyl inositol 3 kinase

(PI3K)/Akt kinase cascade (Marino, Acconcia, & Trentalance, 2003), and

(4) the cAMP/protein kinase A (PKA) signaling pathway (Gu & Moss,

1996; Picotto, Massheimer, & Boland, 1996). Additionally, GPER1 binding

to estrogens promotes estrogen-dependent activation of adenylyl cyclase and

epidermal growth factor receptor (EGFR). Subsequent phosphorylation of

transcription factors by the protein kinases mentioned above can alter their

function and ability to bind to genomic sequences to affect gene expression.

Examples of transcription factors that are affected by these signaling mech-

anisms include: Elk-1, CREB, CCAAT-enhancer-binding protein beta

(C/EBPβ), the NF-κB complex, and the signal transducer and activator

of transcription (STAT) family (Cavalcanti, Lucas, Lazari, & Porto, 2015;
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Fox, Andrade, & Shupnik, 2009; Furth, 2014; Kousteni et al., 2003; Laliotis

et al., 2013; Ozes et al., 1999; Romashkova &Makarov, 1999). Thus, by acti-

vating these non-genomic to genomic mechanisms, the estrogen receptors

ERα and ERβ indirectly regulate gene transcription at alternative DNA

response elements, in addition to the abovementioned genomic effects

involving direct binding to EREs (Fig. 7). Another interesting fact is that both

ERα and ERβ are also targets for phosphorylation by protein kinases including
MAPKs, indicating that non-genomic actions of estrogens may also involve

self-regulation of receptor expression (de Leeuw, Neefjes, & Michalides,

2011; Kato et al., 1995).

Both themembrane bound estrogen receptorGPER1, and some variants of

the ERα and ERβ have been associated to non-genomic estrogen signaling

(Barton et al., 2018; Filardo & Thomas, 2012). It has been suggested that

non-genomic actions of the ERα and ERβ could be mediated through

a sub-population of receptors that located at the cell membrane and can

activate intracellular signaling cascades (Razandi, Pedram, Merchenthaler,

Greene, & Levin, 2004). At the cell membrane, the ERα and ERβ can

interact with scaffold proteins such as caveolin-1 and MNAR/PELP-1 (mod-

ulator of non-genomic activity of estrogen receptor) (Chambliss et al., 2000;

Cheskis et al., 2008; Shaul & Anderson, 1998). By proximity, the ERα and

ERβ also interact with G proteins, various membrane receptors (e.g., tyrosine

kinase, insulin growth factor 1, and epidermal growth factor receptors), and sig-

naling molecules including ras, Src and PI3 kinases, ErbB2 (HER-2/neu) and

Shc that are located at or near the membrane (Boonyaratanakornkit, 2011; Li

et al., 2007; Migliaccio et al., 1996; Song et al., 2010; Song, Zhang, Chen,

Bao, & Santen, 2007; Song, Zhang, & Santen, 2005). Interactions with these

molecules promotes intracellular activationofmitogen activatedprotein kinases

(MAPK) and protein kinase B (Akt) signaling pathways that can affect trans-

criptional regulation (Li et al., 2010). While there is no clear consensus among

the experts in the field about binding of ERα and ERβ to the plasma mem-

brane, it appears that the mechanisms described above are cell-type specific

and activated under certain physiological events, and by specific receptor

variants (Li, Haynes, & Bender, 2003).

11. Genomic and non-genomic signaling crosstalk

As exemplified in the previous sections, it is evident that the mecha-

nisms of action of estrogen in the various cell targets represent a combination

of complex multifactorial processes. Besides the independent genomic and
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non-genomic pathways described above, many authors have proposed the

existence of additional convergent pathways involving both genomic and

non-genomic factors that result in regulation of gene transcription

(Bj€ornstr€om & Sj€oberg, 2005; Silva, Kabil, & Kortenkamp, 2010;

Vrtačnik et al., 2014). Twomechanisms of “cross-talk” have been described,

and involve protein-protein interactions of components of both pathways.

In one mechanism, estrogen-bound nuclear estrogen receptor complexes

are dimerized and translocated to the nucleus, where they bind to phosphor-

ylated transcription factors resulting from GPER1-mediated signaling. The

complexes then bind to either ERE sequences via the nuclear estrogen

receptors, or to AP-1, STATs, ATF-2/c-Jun, Sp1, and/or NF-κB cognate

DNA binding sites (Bj€ornstr€om & Sj€oberg, 2005). In the second mecha-

nism, interaction of GPER1 and ERα and ERβ located at the plasma

membrane activate protein kinase cascades that result in phosphorylation

of AP-1, STATs, Elk-1, CREB, andNF-κB, and other transcription factors,
as well as estrogen receptors themselves, that can then interact with DNA

sequences to regulate transcription (Bj€ornstr€om & Sj€oberg, 2005). Thus,
convergence of the two classical estrogen receptor regulation pathways

can result in enhanced transcriptional activity in specific tissues and physio-

logical processes.

12. Estrogen receptor ligand independent signaling

An interesting phenomenon observed in many cells is that estrogen

receptors can actually be activated in the absence of estrogens or other

receptor agonists (Bennesch & Picard, 2015; Maggi, 2011; Vrtačnik et al.,

2014). This ligand-independent estrogen receptor activation is mainly

triggered by phosphorylation on specific residues (e.g., serine and tyrosine)

in the receptors themselves, or their association with coregulators (described

below). This independent mechanism requires the action of regulatory

molecules necessary for phosphorylation, such as protein kinase A

(PKA), protein kinase C (PKC), MAPK phosphorylation cascade com-

ponents, as well as inflammatory cytokines (e.g., interleukin-2), cell

adhesion molecules (e.g., heregulin), cell cycle regulators (e.g., RAS

p21 protein activator cyclins A and D1), and peptide growth factors

including EGF, insulin, IGF1, and transforming growth factor beta (TGFβ)
(Nilsson et al., 2001).
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13. Estrogen receptor coregulators and
transcriptional control

In addition to the regulatory pathways described above, the cell also

expresses a battery of coregulators that can either enhance or decrease tran-

scriptional activity of steroid hormone receptors. These are called estrogen

receptor coactivators and corepressors, respectively. Coregulators are

involved in many steps of the gene expression process, including chromatin

modification and remodeling, transcription initiation, elongation of RNA

chains, mRNA splicing, mRNA translation, miRNA processing, and deg-

radation of the activated NR-coregulator complexes (Lonard & O’malley,

2007). Currently, there are hundreds of coregulators of nuclear receptors

described that play a key role in promoting gene expression and transcrip-

tional activity. Coregulators are a dynamic group of proteins able to act as

integrators of signals from steroid hormones, and have been linked to many

diseases affected by sex hormones, such as cancer (Lonard &O’Malley, 2006).

One of the first coregulators of ERα, known as steroid receptor coactivator

(SRC-1), was identified in 1995 (Oñate, Tsai, Tsai, &O’Malley, 1995). Since

then, many additional coregulators have been discovered for ERα, although
very few are known for ERβ (Lonard & O’Malley, 2006). Coregulators for

ERα comprise members of the steroid receptor coactivator (SRC)/p160

group, the histone acetyltransferase cAMP responsive element binding pro-

tein (CREB)-binding protein (CBP)/p300, ATP-dependent chromatin

remodeling complexes like SWI/SNF, E3 ubiquitin-protein ligases, and

steroid RNA activator (SRA) (Lonard & O’Malley, 2006; Manavathi,

Samanthapudi, & Gajulapalli, 2014). Therefore, as indicated above, even

though both nuclear estrogen receptors are able to use estradiol as their

physiological ligand, they exert multiple effects and functions in different

cells and tissues that are mediated by several intermediaries and differential

utilization of coregulators (Manavathi et al., 2014).

The mechanisms by which coregulators control the actions of estrogen

receptors are still a topic of ongoing research. From studies in cancer cells,

we have learned that a large group of coregulators have specific structural

motifs that than affect their contact with ER ligand-binding domains

(Heery, Kalkhoven, Hoare, & Parker, 1997). The specific motifs are called

NR boxes or LXXLL motifs (X, any amino acid; L, leucine). On the other

hand, we know that corepressors block ER-mediated gene transcription via
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(1) direct interaction with unbound estrogen receptors; (2) using their core-

pressor nuclear receptor box; (3) competing with coactivators (Hu & Lazar,

1999). It has also been reported that the concentration of several coregulators

depends on estrogen induced-transcriptional regulation via the estrogen

receptors (Mishra, Balasenthil, Nguyen, & Vadlamudi, 2004). Additionally,

several post-translational modifications such as phosphorylation, methyla-

tion, ubiquitination, SUMOylation, and acetylation can impact the action

of coregulators targeting gene expression (Han, Lonard, & O’Malley,

2009; Lonard & O’malley, 2007; O’Malley & McKenna, 2008).

14. Endogenous and exogenous estrogen
receptors ligands

Apart from the estrogens that are naturally produced by gonadal and

other tissues in the body, there is a diverse variety of organic and inorganic

molecules that are able to recognize the estrogen receptors ligand-binding

domains in a precise manner (Table 1). Most of these ligands display higher

selectivity toward ERα, however, several selective compounds for ERβ
have recently been described (Farooq, 2015). There are five main classes

of ER ligands: endoestrogens, phytoestrogens, xenoestrogens, selective

estrogen receptor modulators (SERMs) and metalloestrogens.

Endoestrogens are physiological estrogens that are endogenously pro-

duced by the body. Most endoestrogens (i.e., estradiol, estriol, estretrol,

and estrone) were previously discussed in the chapter. Briefly, endoestrogens

are steroidal compounds produced from cholesterol in the male and female

gonads and other organs (Farooq, 2015). In contrast, phytoestrogens are non-

steroidal compounds produced by plants. There are three known groups of

phytoestrogens: isoflavones, coumestans, and lignans (Basu & Maier, 2018).

Because phytoestrogens are chemically and structurally similar to estradiol,

they can participate in both estrogenic and antiestrogenic effects through

activation or blocking of the estrogen receptor ligand-binding domains

(Turner, Agatonovic-Kustrin, & Glass, 2007). Interestingly, the phyto-

estrogens genistein, coumestrol, and liquiritigenin have been reported to

display more affinity toward ERβ than to ERα, but the implications of these

differences remain unknown (Kuiper et al., 1998; Manas, Xu, Unwalla, &

Somers, 2004; Mersereau et al., 2008; Nilsson, Kuiper, & Gustafsson, 1998).

Xenoestrogens are another group of ligands that comprise an extensive

variety of non-natural synthetic chemical compounds with estrogenic effects.
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The family of xenoestrogens can be divided into five major types: medicinal

drugs, food additives, body cosmetics, environmental pesticides, and indus-

trial chemicals (Farooq, 2015). Drugs such as diethylstilbestrol (DES) and

ethinyl estradiol were specifically synthesized to mimic the action of

endoestrogens, and have been extensively to treat many conditions in

women (Gennari, Merlotti, Valleggi, Martini, & Nuti, 2007; Maximov,

Lee, & Jordan, 2013). However, it has been found that these compounds

can affect cellular and molecular processes leading to severe effects on health,

and their use in medical therapeutics remains controversial (Aravindakshan,

Gregory, Marcogliese, Fournier, & Cyr, 2004; Aravindakshan et al., 2004;

Arukwe, Celius, Walther, & Goksøyr, 2000; Christin et al., 2004; Golden

et al., 1998; Iorga et al., 2017; Vajda et al., 2008; Williams, Lech, & Buhler,

1998). In the past few years, a wealth of evidence has been accumulated

demonstrating that estrogens regulate many facets of the inflammatory

response and the immune system via complex molecular mechanisms that

are also sex dependent (Khan &Ansar Ahmed, 2015). It is now plausible that

any immune cell that expresses estrogen receptors can potentially respond to

ligand binding in a context-dependent manner, which will affect the out-

come of the overall immune response. Thus, given the known spatial and

temporal expression of the estrogen receptors, it is important to consider this

aspect when designing potential therapeutic therapies targeting the estrogen

receptor signaling pathways (Arnal et al., 2017). Additionally, precise timing

of treatment initiation and duration may be required to determine the true

efficacy of estrogen treatment (Burns & Korach, 2012; Hamilton, Hewitt,

Arao, & Korach, 2017).

The selective estrogen receptor modulators (SERMs) are another type of

estrogen receptor ligands. The main difference between SERMs and xeno-

estrogens relies on the fact that SERMs present functional duality and are

able to act both as agonists and antagonists of the estrogen receptors in dif-

ferent tissues (Martinkovich, Shah, Planey, & Arnott, 2014; Shang &

Brown, 2002; Smith & O’Malley, 2004). At the molecular level, SERMs

employ their antagonistic actions by competing with estradiol for binding

to an inner hydrophobic pocket within the ligand-binding domain of ERα
(Bourguet, Germain, & Gronemeyer, 2000; Shiau et al., 1998; W€arnmark

et al., 2002). Binding of this estradiol agonist induces a conformational

change in the LBD that results in sealing the ligand binding pocket. Some

of the most important SERMs include tamoxifen, raloxifene, clomifene,

ormeloxifene, and toremifene (Farooq, 2015). One of the most used

SERMs in the treatment of breast cancer, tamoxifen, acts as an antagonist
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in breast tissue, but as an agonist in the uterus. Therefore, while tamoxifen

is often the selected treatment for ER-positive breast cancer, it can also

stimulate endometrial cell growth leading to uterine cancer (Hu, Hilakivi-

Clarke, & Clarke, 2015). While most SERMs are mainly selective for

ERα, there are a few synthetic steroidal analogs that can regulate the actions

of ERβ, or both receptors (Blizzard et al., 2007; Blizzard et al., 2006;

Blizzard et al., 2007; Papapetropoulos, 2007).

Finally, in addition to the organic ligands mentioned above, there are also

inorganic compounds in the form of heavy metal ions that present estrogenic

activity. These are collectively known as metalloestrogens. Examples of these

include: aluminum (Al3+), antimony (Sb3+), barium (Ba2+), cadmium (Cd2+),

chromium (Cr2+), cobalt (Co2+), copper (Cu2+), lead (Pb2+), mercury (Hg2+),

nickel (Ni2+), arsenite (AsO3
3!), selenite (SeO3

2!) and vanadate (VO4
3!)

(Farooq, 2015). Studies have shown that these metalloestrogens are able to

coordinate to specific amino acid residues within the ligand-binding domain

of the nuclear estrogen receptors, thus blocking binding of estradiol in a non-

competitive manner (Stoica, Katzenellenbogen, & Martin, 2000; Stoica,

Pentecost, & Martin, 2000a, 2000b).

15. Discussion

Estrogen receptors regulate a multitude of biological and physiological

processes. These are tightly controlled by complex mechanisms involving

either genomic nuclear direct binding to specific DNA sequences, or activa-

tion of intracellular cascades resulting in non-genomic control of transcrip-

tion. Over the past 60years since the discovery of the first nuclear estrogen

receptors, and the almost 20years since the discovery of the membrane recep-

tor, multiple mechanisms of action have been discovered and characterized.

These involve a multitude of intracellular kinases, transcription and growth

factors, membrane receptors, coregulators, and natural and synthetic ligands.

The information obtained in these studies has helped in the design of thera-

peutic strategies for diseases involving the estrogen receptors such as many

cancers, as well as in the treatment of endocrine conditions affecting fertility

and resulting from menopause. While there are still many diseases for which

estrogens have been implicated but the role of their receptors has not been

elucidated, the knowledge gained in the past six decades together with

new advances in precision medicine and molecular diagnostic techniques will

allow for the development of more personalized strategies to prevent and treat

conditions that are affected by estrogens and other steroid hormones.
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