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Fuentes N, Nicoleau M, Cabello N, Montes D, Zomorodi N,
Chroneos ZC, Silveyra P. 17�-Estradiol affects lung function and
inflammation following ozone exposure in a sex-specific manner. Am
J Physiol Lung Cell Mol Physiol 317: L702–L716, 2019. First pub-
lished September 25, 2019; doi:10.1152/ajplung.00176.2019.—In-
flammatory lung diseases affect men and women disproportionately,
suggesting that fluctuations of circulating hormone levels mediate
inflammatory responses. Studies have shown that ozone exposure
contributes to lung injury and impairment of innate immunity with
differential effects in men and women. Here, we hypothesized that
17�-estradiol enhances inflammation and airway hyperresponsiveness
(AHR), triggered by ozone exposure, in the female lung. We per-
formed gonadectomy and hormone treatment (17�-estradiol, 2 wk) in
C57BL/6J female and male mice and exposed animals to 1 ppm of
ozone or filtered air for 3 h. Twenty-four hours later, we tested lung
function, inflammatory gene expression, and changes in bronchoal-
veolar lavage fluid (BALF). We found increased AHR and expression
of inflammatory genes after ozone exposure. These changes were
higher in females and were affected by gonadectomy and 17�-
estradiol treatment in a sex-specific manner. Gonadectomized male
mice displayed higher AHR and inflammatory gene expression than
controls exposed to ozone; 17�-estradiol treatment did not affect this
response. In females, ovariectomy reduced ozone-induced AHR,
which was restored by 17�-estradiol treatment. Ozone exposure also
increased BALF lipocalin-2, which was reduced in both male and
female gonadectomized mice. Treatment with 17�-estradiol increased
lipocalin-2 levels in females but lowered them in males. Gonadectomy
also reduced ozone-induced expression of lung IL-6 and macrophage
inflammatory protein-3 in females, which was restored by treatment
with 17�-estradiol. Together, these results indicate that 17�-estradiol
increases ozone-induced inflammation and AHR in females but not in
males. Future studies examining diseases associated with air pollution
exposure should consider the patient’s sex and hormonal status.

air pollution; estrogen; lung inflammation; sex differences; sex hor-
mones

INTRODUCTION

Air pollution exposure can initiate severe inflammatory
responses in susceptible individuals (23, 64). Ground-level
ozone is a harmful air pollutant that can trigger health prob-
lems, such as throat irritation, airway inflammation, and im-
paired lung immunity (36). Ozone can also decrease lung

function, induce airway hyperresponsiveness (AHR), and
worsen asthma symptoms, leading to an increase in hospital
admissions, healthcare costs, and morbidity and mortality (2,
37, 40).

It is known that several lung diseases display sexual dimor-
phism in risk, prevalence, and severity (77). For example, the
current incidence of asthma in women (10.4%) is nearly double
that of men (6.2%) in the United States (10). Accordingly, the
risk for women having an asthma exacerbation requiring hos-
pital admission is also almost double than it is for men (44, 46).
These sex differences in exacerbation risk and prevalence,
together with the observed crossover in the incidence of asthma
versus age, where asthma trends move from higher rates in
boys than girls before puberty to higher rates in women than
men after puberty, and the new-onset asthma observed in
significant numbers in girls during adolescence, suggest that
some of these effects may be attributable to hormonal factors
(28, 29, 57, 76). To address this phenomenon, clinical studies
in women have explored associations of asthma exacerbations
and frequency of symptoms with circulating hormone level
oscillations occurring throughout the menstrual cycle, preg-
nancy, oral contraceptive use, and menopause (15, 54, 67, 73).
Combined, these studies have shown that sex hormones can
play a significant role in differences between male and female
inflammatory responses and affect central features of lung
disease, such as airway tone, inflammation, and immunity (58,
69, 71). Despite this evidence, only a few studies have ad-
dressed the mechanisms by which sex hormones affect the
pathogenesis of lung disease.

Sex differences have also been observed in clinical and
animal studies where ozone exposure was studied (16, 72). In
humans, ozone significantly decreases forced expiratory vol-
ume in 1 s in female young adults compared with men (43). In
mice, we previously reported that female mice have greater
counts of bronchoalveolar lavage fluid (BALF) neutrophils,
high expression of acute phase cytokines/chemokines, and
different microRNA (miRNA) signatures than male mice (6,
34). Importantly, some of these parameters differ in females
exposed to ozone in various stages of the estrous cycle (31, 34).
Additional studies have also reported that female hormones,
such as estrogens and progestogens, can modify lung immune
responses, affect airway tone, and alter gene transcription,
whereas androgens such as testosterone may exert an opposite
effect (35). Together, the results for these studies suggest that
hormonal factors may influence lung inflammatory responses
to environmental exposures, such as ground level ozone. How-
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ever, there is not a clear understanding about the mechanisms
behind these differences and specifically whether sex hor-
mones are involved.

Previous studies in mouse models of allergic asthma have
reported protective effects of estrogen against AHR (22, 53,
61) and suggested involvement of the inflammasome and
signaling by the estrogen and androgen receptors in this regu-
lation (3, 14, 47). However, the effects of estrogen on airway
inflammation and immunity remain highly controversial.
While some studies have reported protective effects of estrogen
on lung inflammation, the overall effects on lung immunity and
beyond airway smooth muscle biology have not been explored
in detail. A few studies have reported proinflammatory effects
of estrogens in asthma (19, 51), altered phagocytosis of bac-
teria in mice exposed to ozone (25), and exacerbation of
ozone-induced oxidative stress markers in cultured lung epi-
thelial cells (12). Two recent studies have also reported in-
volvement of the microbiome as a mediator of sex-specific
inflammatory responses to ozone (16, 17). Due to the complex-
ity of hormone-related physiological mechanisms, experimen-
tal models are limited, and the overall effects of gonadal
hormones on lung immunity have not been well characterized
in the context of ozone exposure.

In this study, we hypothesized that 17�-estradiol circulating
levels regulate lung function and inflammation following
ozone exposure. To test this hypothesis, we exposed gonadec-
tomized female and male C57BL/6J mice, with or without
17�-estradiol treatment, to ozone or filtered air (FA). We then
analyzed the overall inflammatory response among groups by
comparing lung cell profiles and inflammatory gene signatures,
and we assessed lung mechanics. Our results indicate that
pulmonary function and inflammation following ozone expo-
sure can be affected by 17�-estradiol levels in a sex-dependent
manner. Together, the results presented here suggest that es-
trogen can regulate lung mechanics and inflammatory mecha-
nisms initiated in response to air pollution exposure and sug-
gest that future clinical and animal studies should consider
hormonal status when evaluating lung function and inflamma-
tory outcomes.

MATERIALS AND METHODS

Animals. For all experiments, we used adult male and female
C57BL/6J mice (8 wk old) from JAX Laboratories (Bar Harbor, ME).
Animals were housed in a 12:12-h light-dark cycle with food and
water ad libitum at the Penn State College of Medicine animal facility.
The Penn State College of Medicine Institutional Animal Care and
Use Committee approved all procedures.

Gonadectomy and hormone treatment. Male and female C57BL/6J
mice were gonadectomized or sham operated under a ketamine-
xylazine cocktail (90 mg/kg ketamine, 10 mg/kg xylazine, ip) in our
research facility. Briefly, a ventral skin incision was made in the lower
abdominal area of female mice to provide access to the peritoneal
cavity. The ovary and oviduct were exteriorized, and a sterile silk
ligature was placed around the oviduct. Each ovary and part of the
oviduct were removed with a single cut. The body wall was closed by
sterile absorbable vicryl suture. In males, a small incision was made
in the scrotum, and testicles were exteriorized. The epididymis, vas
deferens, and testicular blood vessels were exposed and clamped
while holding the testicular sac with sterile tooth forceps. A sterile silk
ligature was placed around the testicular blood vessels to prevent
bleeding, and testicles were removed using scissors. The skin was
closed with metal clips. Sham animals were subjected to the same
procedure, but no gonads were removed. Following surgery, sham and
gonadectomized mice were monitored twice daily to ensure optimal
recovery, and they received daily 17�-estradiol at a dose of 10 �g·kg
body wt�1·day�1. The hormone or vehicle control (sesame oil) were
mixed with nut cream (Nutella) at the calculated dose and adminis-
tered orally following published protocols (66). For this, animals were
placed in separate cages and fed the nut-cream mix on small polysty-
rene weighing boats. After 2 wk, animals were used for exposures. A
schematic of the experimental model is provided in Fig. 1. The estrous
cycle stage in sham mice was determined by vaginal smear, and

Table 1. Number of female mice in each estrous cycle stage

Estrous Cycle Stage (Sham Females) No. of Animals

Proestrus (P) 4
Estrus (E) 3
Metestrus (D1) 6
Diestrus (D2) 6

Fig. 1. Experimental design. Sham and gonadectomized [ovariectomized (OVX), orchiectomized (ORX)] female and male C57BL/6J mice received daily
17�-estradiol (10 �g·kg body wt�1·day�1). The hormone or vehicle control was mixed with nut cream and administered orally for 2 wk. Animals were then
exposed to ozone (1 ppm; O3) or filtered air (FA) for 3 h.
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animals in all estrous cycle stages were used for ozone exposures to
avoid cycle effects (Table 1) (30).

Ozone exposure. We used an ozone exposure chamber, as de-
scribed in Mishra et al. (56). Briefly, mice were exposed to 1 ppm of
ozone or FA (control) for 3 h in adjacent chambers (n � 4–8 per
group). Both male and female mice were located in glass containers
with bedding, food, and water ad libitum and placed in an exposure
chamber as described in Cabello et al. (6). Ozone concentration was
recorded every 15 min for the duration of the exposure. The system
delivers a regulated air flow (�30 air changes/h) at a controlled
temperature (25°C) and relative humidity (50%) (70).

RNA preparation. At 24 h following exposure, lungs were collected
and snap frozen in liquid nitrogen for downstream purification of
nucleic acids. Total RNA was extracted from pulverized lung tissue
using the Direct-Zol RNA kit (Zymo Research, Irvine, CA), following
the manufacturer’s protocol and treated with DNAse I (Zymo Re-
search, Irvine, CA) to remove genomic DNA. RNA concentration was
determined by Nanodrop, followed by a Bioanalyzer analysis for
RNA quality (RNA integrity number � 7) and purity (6).

Real-time PCR. For gene expression analysis, 2 �g of purified
RNA were retro-transcribed using the High-Capacity cDNA Reverse
Transcription Kit (Thermo Fisher, Waltham, MA), following the
manufacturers’ protocol. The expression levels of Ccl20/MIP-3 (mac-
rophage inflammatory protein-3) (assay no. Mm01268754), IL-6/
interleukin-6 (assay no. Mm00446190), Cxcl2/MIP-2 (assay no.

Mm00436450), and Nos2 (assay no. Mm00440502) were then mea-
sured by real-time PCR in 25–50 ng of cDNA, using TaqMan assays
(Life Technologies, Carlsbad, CA). Results were analyzed as de-
scribed by us previously and normalized to 18s rRNA expression
(assay no. Mm03928990) by the relative quantification method (52).

Lung function. Mice were anesthetized with ketamine, (90 mg/kg),
xylazine (10 mg/kg), and vecuronium bromide (1 mg/kg ip) at 24 h
postexposure. Animals were connected to a flexiVent system (SCIREQ
Inc., Canada) at a respiratory rate of 150 breaths/min and a positive
end-expiratory pressure of 3 cmH2O. Increasing doses of methacholine
(MCh; 0–50 mg/mL, Sigma-Aldrich, St. Louis, MO) were administered
as described previously (27).

BALF analysis. A solution of 2.5 mL Dulbecco’s phosphate-
buffered saline and 1 mM EDTA was used to lavage the lungs,
following standard protocols (6). Total cell number was assessed
using a hematocytometer. A total of 50,000 cells per slide were used
for cytospins and stained with a Hema-3 stain kit (Fisher Scientific,
Pittsburgh, PA). Slides were independently analyzed under light
microscopy for the presence of immune cells. Lipocalin-2/neutrophil
gelatinase-associated lipocalin (NGAL) levels were determined by
ELISA (R&D Systems, Minneapolis, MN, kit no. MLCN20) in 50 �l
of BALF.

Serum hormone determination and protein measurement. To con-
firm the efficiency of gonadectomies and hormone replacement,
serum levels of 17�-estradiol and testosterone were measured by
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Fig. 2. Serum levels of 17�-estradiol and testosterone measured by ELISA. A and B: 17�-Estradiol levels in female (A) and male (B) mice are shown. C:
testosterone levels in male mice. D: progesterone levels in female mice. Animals were exposed for 3 h to 1 ppm ozone (O3) or filtered air (FA). OVX,
ovariectomized mice; ORX, orchiectomized mice; OVX�E2, 17�-estradiol-treated ovariectomized mice; ORX�E2, 17�-estradiol-treated orchiectomized mice.
Values are means � SE of n � 5–8 mice per group (*P 	 0.05, **P 	 0.005, ***P 	 0.0005).
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ELISA (catalog nos. ES180S-100 and TE187S-100, Calbiotech, El
Cajon, CA).

Data analysis. Interactions of sex, exposure, and gonadectomy
were assessed by three-way ANOVA, followed by Tukey’s post hoc
test (
 � 0.05) using GraphPad Prism software. Simple main effects
of sex, exposure, and hormone status, as well as Pearson correlation
calculations, were also analyzed with GraphPad Prism.

RESULTS

Determination of hormone levels. We confirmed the effi-
ciency of ovariectomy (OVX), orchiectomy (ORX) and hor-
mone treatment in both OVX and ORX mice by measuring
serum levels of estradiol and testosterone (24 h after exposure
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Fig. 3. Bronchoalveolar lavage fluid (BALF) fluid cell counts. Total cells in female (A) and male (B) mice exposed for 3 h to 1 ppm ozone (O3) or filtered air
(FA). Polymorphonuclear neutrophils (% of total) in females (C) and males (D) were measured at 24 h postexposure to O3 or FA. OVX, ovariectomized mice;
ORX, orchiectomized mice; OVX�E2, 17�-estradiol-treated ovariectomized mice; ORX�E2, 17�-estradiol-treated orchiectomized mice. Values are
means � SE of n � 5–8 mice per group (*P 	 0.05, **P 	 0.005, ***P 	 0.0005, ****P 	 0.0001).

Table 2. Bronchoalveolar lavage fluid macrophage and lymphocyte cell percentage in experimental groups

Female Male

Filtered Air Ozone Filtered Air Ozone

Sham OVX OVX�E2 Sham OVX OVX�E2 Sham ORX ORX�E2 Sham ORX ORX�E2

Macrophages, % 96.3 97.3 97.6 90.3 96.6 92.7 98.4 97 97.6 98.2 91.9 97.9
Lymphocytes, % 0.48 0.44 0.46 0.55 0.53 0.56 0.40 0.46 0.41 0.49 0.45 0.44

OVX, ovariectomized mice; ORX, orchiectomized mice; OVX�E2, 17�-estradiol-treated ovariectomized mice; ORX�E2, 17�-estradiol-treated orchiecto-
mized mice.
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to ozone or FA). As expected, gonadectomies performed in
female mice resulted in significantly lower levels of 17�-
estradiol and progesterone, and in lower testosterone levels in
males compared with control (sham) mice (Fig. 2). Addition-
ally, we found significantly higher circulating estradiol levels
in all gonadectomized mice treated with 17�-estradiol (female:
OVX�E2, male: ORX�E2), as well as in sham males exposed
to ozone (Fig. 2). Circulating 17�-estradiol levels in OVX�E2
mice were similar to those observed in proestrus afternoon
(30). Treatment with 17�-estradiol did not affect testosterone
or progesterone levels. However, while ozone exposure did not
significantly affect circulating estradiol and testosterone levels,
it resulted in lower progesterone levels in sham mice (Fig. 2).

17�-Estradiol affects the inflammatory response to ozone.
As previously reported (6), exposure to ozone caused an
increase in total cell numbers in BALF of both female and male
mice, with significantly higher cell numbers and neutrophilia in
females than males (Fig. 3). Moreover, a three-way ANOVA
revealed a significant interaction of sex, ozone exposure, and
gonadectomy status for total cell counts (P 	 0.05) and
neutrophil counts (P 	 0.0001). Single-effects analysis re-
vealed a decrease in total cell number and neutrophil counts in
OVX mice exposed to ozone compared with the ozone-
exposed control (sham) group, indicating that ovarian hor-
mones affect this response. Interestingly, when OVX mice
were treated with 17�-estradiol (OVX�E2) and exposed to
ozone, a significant increase in total cell number and higher
neutrophilia was found. In ORX males exposed to ozone,
there was a significant reduction of total cells, but a signif-
icant increase in neutrophil counts compared with the
ozone-exposed sham males. In addition, there were no
changes in BALF differential cell counts in ozone-exposed
ORX mice treated with 17�-estradiol (ORX�E2) compared
with the ORX group. Ozone-exposed ORX�E2 mice, how-
ever, had a significant decrease in neutrophils, reaching
similar levels to those of the control group. We observed no

significant changes in macrophage and lymphocyte cell
percentage among experimental groups (Table 2).

17�-Estradiol influences lipocalin-2 expression in ozone-
induced lung inflammation. As previously reported by us, the
levels of the lung injury marker neutrophil gelatinase-associ-
ated lipocalin (lipocalin-2/NGAL) were significantly higher in
the BALF of both females and males exposed to ozone (Fig. 4),
with higher levels in males than in females. In gonadectomized
animals (ORX, OVX), we found a significant reduction of
NGAL expression compared with ozone-treated sham mice.
Interestingly, this effect was reversed in OVX females treated
with 17�-estradiol, but not in ORX males, which experienced
a reduction in NGAL levels with hormone treatment. There
were no differences in lipocalin levels in BALF of mice
exposed to FA. Three-way ANOVA confirmed a significant
interaction of sex, ozone exposure, and gonadectomy/estradiol
replacement for BALF lipocalin-2/NGAL levels (P 	 0.001).
These results suggest a potential role of 17�-estradiol in
sex-specific mechanisms of ozone-induced inflammation and
injury. To determine a relationship between neutrophilia and
lipocalin-2 expression, we also conducted correlation analyses
and found a positive correlation between lipocalin levels and
neutrophil counts in females (Pearson r � 0.9786, R2 �
0.9576, P � 0.037), but not in males (Pearson r � �0.1085,
R2 � 0.01178, P � 0.872). Together, these results indicate that
lipocalin-2 expression is influenced by 17�-estradiol in a
sex-dependent manner, potentially via neutrophil recruitment
to the lung in response to ozone exposure.

Exposure to ozone in gonadectomized mice induces differ-
ential inflammatory gene expression signatures in males and
females. To test whether 17�-estradiol affected the inflamma-
tory response to ozone, we screened for the expression of
inflammatory genes in total lung homogenates from gonadec-
tomized mice exposed to ozone or FA using quantitative PCR.
As expected, expression of the Cxcl2 transcript was elevated in
male and female controls exposed to ozone, and this was
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Fig. 4. Lipocalin-2 [neutrophil gelatinase-associated lipocalin (NGAL)] levels in bronchoalveolar lavage fluid (BALF) of treated mice. Lipocalin was measured
by ELISA in BALF from female (A) and male (B) mice exposed to ozone (1 ppm; O3) or filtered air (FA) for 3 h. OVX, ovariectomized mice; ORX,
orchiectomized mice; OVX�E2, 17�-estradiol-treated ovariectomized mice; ORX�E2, 17�-estradiol-treated orchiectomized mice. Values are means � SE of
n � 5–8 mice per group (*P 	 0.05, **P 	 0.005, ****P 	 0.0001).
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higher in females (Fig. 5). We also observed a decline in Cxcl2
expression in gonadectomized mice and an increase with 17�-
estradiol replacement in females. In addition, we found that
Nos2 expression was significantly higher in ORX mice ex-
posed to ozone compared with ozone-exposed sham controls
and FA-exposed ORX mice. However, we found no difference
in Nos2 expression in females (Fig. 5), nor an interaction of
sex, exposure, or hormone status by three-way ANOVA for
Nos2 and Cxcl2 expression. We also confirmed that, in fe-
males, exposure to ozone resulted in significantly higher ex-
pression of the inflammatory cytokines IL-6 and CCL20 (MIP-
3
). Interestingly, expression of both IL-6 and Ccl20 mouse
transcripts was reduced in OVX mice exposed to ozone but not
in OVX mice treated with 17�-estradiol (Fig. 6). In males, Il6
and Ccl20 levels were significantly higher in ozone-exposed
sham versus FA groups. However, ORX males exposed to
ozone had increased levels of IL-6, which were not influenced
by 17�-estradiol replacement (Fig. 6). Similarly, only sham
males exposed to ozone displayed increased levels of Ccl20
versus FA-exposed males, and gonadectomy abolished this

effect. While there was a significant interaction of sex, expo-
sure, and hormone status for both IL-6 and Ccl20 expression
(three-way ANOVA, P 	 0.05), gonadectomy did not affect
expression of inflammatory genes in either male or female
groups exposed to FA. Together, these results support the
hypothesis of an interaction of gonadal hormones and ozone
exposure in the mechanisms leading to the observed sexually
dimorphic phenotypes in lung inflammation, with estradiol
levels associated with higher inflammation in females, but not
males, exposed to ozone.

17�-estradiol treatment alters ozone-induced AHR. To de-
termine whether 17�-estradiol treatment affects ozone-induced
AHR differentially in males and females, we compared lung
function parameters in OVX- and ORX-treated mice following
ozone exposure. As shown above, female (sham) mice exposed
to 1 ppm ozone displayed significantly higher total respiratory
system resistance (Rrs) at higher doses of methacholine (25–50
mg/mL) than females exposed to FA and ozone-treated males
(Fig. 7). On the other hand, OVX female mice exposed to
ozone showed a significant decline in Rrs and Newtonian
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Fig. 5. Relative mRNA expression of Nos2 and Cxcl2 (macrophage inflammatory protein-2
, MIP-2
) in lung tissue. Gene expression was analyzed by real-time
PCR in whole lung tissue extracts from female (A and C) and male (B and D) mice exposed to ozone (O3) or filtered air (FA). OVX, ovariectomized mice; ORX,
orchiectomized mice; OVX�E2, 17�-estradiol-treated ovariectomized mice; ORX�E2, 17�-estradiol-treated orchiectomized mice. Values are means � SE of
n � 5–8 mice per group (*P 	 0.03, **P 	 0.006, ***P 	 0.001).
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resistance levels compared with the female sham group. This
effect was reversed when OVX mice were treated with 17�-
estradiol. In males, we did not find differences in control
(sham) groups exposed to ozone or FA (Fig. 8). However,
ORX males exposed to ozone displayed a significant increase
in Rrs compared with sham males, whereas Rrs decreased after
17�-estradiol replacement in ozone-exposed ORX�E2 males.
When we compared tissue damping (G), a measurement asso-
ciated with tissue resistance in small airways (Fig. 9), we found
that ORX mice exposed to ozone displayed higher G levels
than FA-treated ORX and ozone-exposed ORX�E2. We did
not observe any changes in airway resistance in mice exposed
to FA. When comparing elastance of the total respiratory
system (Ers), we found a significant decrease in sham females
exposed to ozone versus FA, and no effect of ovariectomy and
hormone replacement (Fig. 10). In contrast, ORX males ex-
posed to ozone showed a significant increase in Ers at higher
doses of methacholine than sham males and ORX males
exposed to FA, an effect that was ameliorated with 17�-

estradiol treatment (Fig. 11), suggesting that estradiol has
contextual inflammatory and anti-inflammatory effects. How-
ever, these effects were not significant when comparing tissue
elastance, a parameter associated with elastance in small air-
ways (Fig. 12).

DISCUSSION

Sex disparities in sensitivity to air pollution exposure and the
induction and exacerbation of lung disease by ozone exposure
have been identified, but the hormonal basis of these differ-
ences has not yet been examined (5, 55, 74). It has also been
shown that asthma worsens at differential rates in women
versus men, and that this is contingent on their hormonal status,
including the menstrual cycle, pregnancy, menopause, and
hormone therapy (39, 76). Moreover, postmenopausal women
display differing outcomes in lung health when subjected to
estradiol replacement therapy (18, 49, 50). Here, we used
mouse models of gonadectomy and hormone replacement to
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Fig. 6. Relative mRNA expression of IL-6 and Ccl20 (macrophage inflammatory protein-2
, MIP-2
). Gene expression was analyzed by real-time PCR in whole
lung tissue extracts from female (A and C) and male (B and D) mice exposed to ozone (O3) or filtered air (FA). OVX, ovariectomized mice; ORX, orchiectomized
mice; OVX�E2, 17�-estradiol-treated ovariectomized mice; ORX�E2, 17�-estradiol-treated orchiectomized mice. Values are means � SE of n � 5–8 mice
per group (*P 	 0.05, **P 	 0.002, ***P 	 0.001).
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investigate the mechanisms by which the female gonadal
hormone, 17�-estradiol, modulates inflammatory responses to
ozone. Specifically, we tested the hypothesis that 17�-estradiol
mediates the ozone-induced inflammatory response in the fe-
male lung, but not the male lung. To distinguish between
17�-estradiol-mediated effects versus anatomical and/or phys-
iological airway differences in the mouse lung, as well as other
sex-specific endocrine effects, we conducted experiments in
male and female sham and gonadectomized mice treated only
with 17�-estradiol. Our results show that 17�-estradiol affects
lung inflammation, AHR, and lung gene expression responses
triggered in response to ozone exposure in both male and
female mice, suggesting a role of 17�-estradiol in mediating
sex-specific mechanisms of ozone toxicity.

Based on our preliminary studies, in which we observed
exacerbated inflammation in female mice exposed to ozone in
the follicular phase of the estrous cycle (i.e., when estrogen
levels are high) versus the luteal phase (when estrogen levels
are low), as well as recent studies showing estrogenic regula-
tion of inflammatory responses in the lung (3, 21, 62), our main
goal was to determine whether circulating 17�-estradiol levels
triggered lung inflammation and AHR on ozone exposure. To
test this, we exposed gonadectomized female and male

C57BL/6J mice, with or without 17�-estradiol treatment, to
ozone or FA. We then analyzed the overall inflammatory
response by comparing lung profiles, expression of inflamma-
tory genes, and lung mechanics. Our results show that both
pulmonary function and inflammation following ozone expo-
sure are affected by 17�-estradiol levels in a sex-dependent
manner. After ozone challenge, OVX developed lower AHR
and inflammation than sham females, which was characterized
by a decline in airway resistance, total BALF cell numbers,
neutrophilia, and lipocalin-2 levels compared with sham-oper-
ated mice. Additionally, 17�-estradiol replacement in OVX
mice restored the ozone-induced AHR and cell migration to the
lungs up to the levels found in sham-operated females. These
data strongly suggest that 17�-estradiol exerts an important
regulatory role in ozone-induced lung function and inflamma-
tion in female mice. On the other hand, we found that ozone-
exposed ORX mice displayed a decrease in BALF total cell
number and lipocalin-2 levels, and an increase in neutrophils
and AHR compared with sham males. While the latter was
ameliorated with 17�-estradiol treatment, no other measures
were affected by 17�-estradiol, strongly suggesting a sex-
specific effect of 17�-estradiol, and a potential involvement of
androgens in the response to ozone. While previous studies
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have indicated potential roles of androgens in mechanisms of
lung inflammation (11, 21, 35), future research in male mice
using androgen treatment and appropriate controls may help
elucidate these mechanisms.

Studies in animal models of lung inflammation and disease
have suggested that estradiol could be associated with disease
progression and contribute to AHR development (9). In one
study conducted in a rat model, female animals exposed to an
allergen had increased airway inflammation compared with
males (42). Interestingly, airway inflammation was decreased
in allergen-exposed ovariectomized rats, and estrogen replace-
ment reestablished lung inflammation (51). In addition, our
group has previously reported sex-specific expression of in-
flammatory mediators and sex-specific miRNA signatures in
response to ozone exposure, as well as a prospective role of
circulating hormone levels in the regulation of intracellular
signaling pathways (6, 34, 56). Despite this evidence, only a
few studies have addressed the mechanisms by which estro-
gens affect the inflammatory response and lung function in
response to ozone. Moreover, it has also been postulated that
sex hormones can act as physiological modulators of lung
function and immunity in women (1, 8, 24). However, little or
nothing is known about the mechanisms by which hormones

regulate pollution-induced lung responses in male and female
patients.

Analysis of BALF confirmed an increase in total cell number
and neutrophils in both female and male control groups, with a
pronounced effect in females. OVX mice had a decrease in
total cells and neutrophils that was later recovered by 17�-
estradiol treatment. Moreover, the same pattern was observed
in the expression of Cxcl2 and Il6 gene transcripts. The
macrophage inflammatory protein, CXCL2, is a chemoattrac-
tant for polymorphonuclear neutrophils. Similarly, IL-6 repre-
sents a vital checkpoint regulator of neutrophil trafficking
during the inflammatory response (26). It has been previously
shown in vitro that 17�-estradiol increases the expression of
leukocyte adhesion molecules (48, 51). This discovery allowed
us to deduce that 17�-estradiol could contribute to cellular
trafficking in the airways of ozone-exposed female mice.

We have previously reported that the Ccl20, Il6, and Cxcl2
mRNAs were affected by ozone inhalation in both males and
females, with higher expression in females than in males (6).
Here we further showed that there was a decline in Il6, Ccl20,
and Cxcl2 transcripts in OVX mice that was partially recovered
after 17�-estradiol replacement in ozone groups. This suggests
that 17�-estradiol influences the expression of Il6, Ccl20, and

0
1.5

6
3.1

3
6.2

5
12

.5 25 50
0

1

2

3

4

5

Methacholine (mg/mL)

R
rs

(c
m

H
2O

.s
/m

L)

Respiratory Resistance of Sham Male Mice

Sham FA
Sham O3

0
1.5

6
3.1

3
6.2

5
12

.5 25 50
0

1

2

3

4

5

Methacholine (mg/mL)

R
rs

(c
m

H
2O

.s
/m

L)

Respiratory Resistance of ORX+E2 Mice

ORX+E2 FA
ORX+E2 O3

0
1.5

6
3.1

3
6.2

5
12

.5 25 50
0

1

2

3

4

5

Methacholine (mg/mL)

R
rs

(c
m

H
2O

.s
/m

L)

Respiratory Resistance of ORX Mice

ORX FA
ORX O3

Sham
FA

Sham
O3

ORX FA

ORX O3

ORX+E
2 FA

ORX+E2 O3
0

2

4

6

8

M
ax

(R
rs

)(
cm

H
2O

.s
/m

L)

Maximum Resistance of Male
Mice at 50 mg/mL Methacholine

***

***

***
***

***

A B

C D

Fig. 8. Effect of ozone (O3) exposure and 17�-estradiol treatment on airway hyperresponsiveness in males. Airway resistance was measured by flexiVent in male
mice exposed to O3 (dashed line) or filtered air (FA; solid line). A–C: respiratory system (whole lung) resistance (Rrs) in sham (control; A), orchiectomized (ORX)
mice (B), and 17�-estradiol- treated orchiectomized (ORX�E2) mice (C). D: comparison of Rrs at 50 mg/mL of methacholine among groups. Values are
means � SE of data from n � 4–6 mice per group (***P 	 0.001).

L710 ESTROGEN REGULATION OF LUNG INFLAMMATION

AJP-Lung Cell Mol Physiol • doi:10.1152/ajplung.00176.2019 • www.ajplung.org
Downloaded from journals.physiology.org/journal/ajplung (045.037.091.106) on March 23, 2021.



Cxcl2 in females. Previous studies in lung cells have described
high levels of Ccl20 on exposure to air pollution and have
proposed a role for this inflammatory mediator in the transition
from innate to adaptive immunity and in recruitment of den-
dritic cells (59, 68). The MIP, Cxcl2, is secreted by monocytes
and macrophages and is chemotactic for polymorphonuclear
neutrophils. Interleukin-6 represents a vital checkpoint regula-
tor of neutrophil trafficking during the inflammatory response
by orchestrating chemokine production and leukocyte apopto-
sis (26). It has been previously shown in vitro that 17�-
estradiol increases the expression of leukocyte adhesion mol-
ecules (48, 51). Thus this discovery allowed us to deduce that
17�-estradiol could contribute to cellular trafficking in the
airways of ozone-exposed female mice. One potential mecha-
nism by which 17�-estradiol can affect gene expression is
through interaction with nuclear and membrane-bound recep-
tors, a mechanism known to trigger intracellular mechanisms
and genomic effects that ultimately affects RNA polymerase
activity (33). Our unpublished studies in male and female
cultured alveolar macrophages suggest that both nuclear and
membrane estrogen receptors contribute to the sex-specific
response to ozone and trigger an increase in expression of
proinflammatory genes, including cytokines, chemokines, and
enzymes involved in macrophage activation, followed by in-
creased neutrophil cell trafficking. While we did not measure
additional changes in gene expression, we do expect that
multiple gene expression networks are affected by 17�-estra-

diol treatment due to the pleiotropic effects of estrogens and
the presence of estrogen receptor elements in gene promoters
(32). Regarding Nos2 mRNA, we found significantly higher
levels in ORX males exposed to ozone versus all other groups,
suggesting that this gene may be regulated by androgens. The
increase in Nos2 was independent of 17�-estradiol treatment in
ORX males. This is an interesting finding, since prior studies
conducted in murine models of ovalbumin sensitization and
challenge have reported increased levels of Nos2 (20, 60), a
phenomenon also reported in patients with asthma (41). How-
ever, a study conducted in male mice only reported no differ-
ences in Penh (a marker of AHR) between OVA sensitized WT
versus Nos2 knockout mice (20).

To determine whether ozone-induced lung injury was af-
fected by gonadal hormones, we measured neutrophil gelati-
nase-associated lipocalin (lipocalin-2) levels in BALF. Lipoca-
lin-2 is produced mainly by neutrophils during lung inflamma-
tion/injury (45). We found that lipocalin-2 was increased by
ozone exposure in both females and males. However, lipoca-
lin-2 decreased in OVX mice exposed to ozone and was
triggered by 17�-estradiol treatment in OVX mice. Therefore,
upregulation of lipocalin-2 correlates with the increase in
BALF neutrophilia in females, but not males. In addition, the
promoter region of the lipocalin-2 gene contains the binding
sites of nuclear receptor response elements, including estrogen
response elements, suggesting a potential interaction of hor-
mone-receptor complexes with this gene promoter to control
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lipocalin-2 expression (63). This is dissimilar in males, where
ORX displayed an increase in BALF neutrophils, but a reduc-
tion in lipocalin-2 levels. Studies have suggested that lipoca-
lin-2 can also be produced by other tissues and cells such as
adipocytes, bone marrow, immune cells, liver, spleen, and
kidney in mice (78). Overall, lipocalin-2 expression may be
influenced by 17�-estradiol in a cell-specific and sex-depen-
dent manner, but more studies are needed to elucidate these
mechanisms.

Ozone causes an increase in effective stiffness of the lung
because of changes in the conducting airways, with more
exacerbations in females (13, 74). These effects have been
reported in women exposed to other air pollutants, such as
particulate matter and nitrogen dioxide (75). One of the most
highly characterized effects of ozone exposure is increased
AHR, a main symptom of asthma (38). In this regard, studies
conducted in our lab have shown differences in lung mechanics
in mice exposed to ozone across the estrous cycle. Female mice
exposed to ozone in the follicular phase (i.e., when estrogen
levels are high) displayed significantly higher AHR than fe-
males exposed to ozone in the luteal phase (i.e., when estrogen
levels are low), suggesting a role of sex hormones in altering
lung physiology. However, the specific role of 17�-estradiol in
controlling AHR remains to be elucidated. Here, we found that

ozone was linked to 17�-estradiol changes in respiratory me-
chanics. Ozone-exposed OVX developed lower AHR than
sham females. After 17�-estradiol replacement, OVX mice
restored the ozone-induced AHR. In males, ozone-exposed
ORX mice exhibited an increase AHR, compared with sham
males. Surprisingly, 17�-estradiol treatment in males resulted
in reduced AHR. These findings are consistent with prior
studies showing that testosterone treatment can relax tracheal
smooth muscle and improve lung capacity outcomes (4). An-
other study reported that the effects of gonadectomy in males
could be associated with the role of androgens on vagus
nerve-mediated reflex (7). The effect of estradiol treatment on
male AHR, however, needs to be further explored. Based on
these data, sex differences and sex hormones should be care-
fully considered when studying air pollution-induced lung
function.

In summary, the results presented here suggest that ozone
exposure results in sex-specific lung responses, with different
thresholds for lung inflammation, lung function, gene expres-
sion, and immune cell activation. In addition, several of these
actions appear to be mediated, at least in part, by 17�-estradiol,
also in a sex-specific manner. Future studies should focus on
the mechanisms by which 17�-estradiol, either alone or in
combination with other sex hormones, induces inflammation in
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the female lung. Potential factors to consider are 17�-estradiol
effects in lung epithelial and immune cells, as well as genomic
and nongenomic effects of the hormone mediated by the
nuclear and membrane estrogen receptors (65). With the up-
surge of inflammatory respiratory disorders in women, it is
imperative to increase our understanding of sex-specific mech-
anisms of immune response, as well as to recognize the roles of
sex hormones in regulating airway inflammation, innate im-
munity, and other processes in the lung. Acquiring information
on these sex-specific mechanisms will help us elucidate poten-
tial therapeutic targets to treat lung inflammation in a more
personalized fashion and prevent pollution-induced injury in
male and female patients.
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